What Every Computer Scientist Should Know About
Floating-Paint Arithmetic

DAVID GOLDBERG
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

Floating-point arithmotic is considered an esotoric :ubject by many people. This is
rather surprising, because floating-point is ubi Almost
every languago has a floating-point from PCs to sup
havo floating-point eccelerators; most compilers will be called upon to compile
flonting-point algorithms from time to time; and virtually every operating systom must
respond to floating-point cxceptions such as overflow This paper presents a tutorial on
tha aspects of floating-point that have a direct impact on designers of computer
eystoms. It bogins with background on floating-point representation and rounding
orror, continues with a discussion of the IEEE floating-point standard, and concludes
with examples of how computer system builders can better support floating point.

Categorics and Subject Descri; : (Primary) C.0[C 8; ization):
Gcmml—-:mlmdwn set dmgn. D 8.4 IProgrnmming Lnnguagu):

crubmclw. error analym. numcnenl ulprithm (Soean&:ry) D.2.1 [Software

D.3.1 [Pr
L Fnrmnl""'" and'ﬂ:w-, ics .4.1 10 ing 8; %
Process Management—synchronization
General Terms: Algorithms, Design, Languages
Additional Key Words and Phrases: d lized number, ion, Moating-point,
ﬂoatins -point standard, gradusl underflow, uuard digit, NaN, overflow, relative error,

error, ding modo, ulp,

INTRODUCTION

Builders of computer systems often need
information about floating-point arith-
metic. There are however, remarkably
few sources of detailed information about
it. One of the few books on the subject,
Floating-Pmnl Computation by Pat Ster-
benz, is long out of print. This paper is a
tutorial on those aspects of floating-point
arithmetic (floating-point h fter) that

tions of addition, subtraction, multipli-
cation, and division. It also contains
bnckground mformatmn on the two

thod: ing r ing error,
ulps and relatwe error. The second part
discusses the IEEE floating-point stnnd-
ard, which is k ing rapidly
b,

£

)y cial hardware ers.

Included in the IEEE standard is the

rounding methed for basic operatmns,
fore, the di ion of the st

have a direct connection to systems
building. It consists of three loosely con-
nected parts. The first (Sectlon 1) dis-
cusses the implications of using different
rounding strategies for the basic opera-

draws on the material in Section 1. The
third part discusses the connections be.
tween ﬂoatmg point and the design of
various asp of

Topics include instruction set dmlgn,

Pennlnlon w copy withuuz fee ull or pm of this xaméﬁ is granted provided that tho copies are not made
d for dire: Al

pyright notice and the ut]o of the ;uuhlmhon

and ita data appnr. snd nonu is mvm thn eopyin,g is by of the A for C
Machi

inery.
© 1991 ACM 0360-0300/91/03000005 $01.50

a fee and for specific permission.

ACM Computing Surveys, Vol 23, No 1, March 1881

6 . David Goldberg
: CONTENTS

INTRODUCTION

1. ROUNDING ERROR

1.1 Floating Point Formats

12 Rolative Error and Ulps

1 3 Guard Digits

14 Cancellation

16 Exactly Rounded Operations
IEEE STANDARD

H 2.1 Formats and Oporations

2 2 Special Quantities

2 3 Exceptions, Flags, and Trap Handlers
SYSTEMS ASPECTS

31 Instruction Sats

3 2 Languages and Compilers

3 3 Exception Handling
DETAILS

4 & Rounding Error

4 2 Binary-to-Deciinal Conversion
L 4 3 Errors in Summation

5 SUMMARY

APPENDIX
ACKNOWLEDGMENTS
REFERENCES

»

w

-

————

optimizing compilers, and exception
handling.

All the statements made about float-
ing-point are provided with justifications,
but those explanations not central to the
main argument are in a section called
The Details and can be skipped if de-
sired. In particular, the proofs of many of
the theorems appear in this section. The
end of each proof is marked with the B
symbol; when a proof is not included, the

following the

]
statement of the theorem.

1. ROUNDING ERROR

Squeezing infinitely many real numbers
into a finite number of bits requires an
approximate representation. Although
there are infinitely many integers, in
most programs the result of integer com-
putations can be stored in 32 bits, In
contrast, gwen any fixed number of bits,
most ions with real L witl
produce quantities that cannot be exactly
represented using that many bits. There-
fore, the result of a floating-point calcu-
lation must often be rounded in order to

ACM Computing Surveys, Vol 23, No 1, March 1891

fit back into its finite representation. The
resulting rounding error is the character-
istic feature of floating-point computa-
tion. Section 1.2 describes how it is
measured.

Since most floating-point calculations
have rounding error anyway, does it
matter if the basic arithmetic operations
introduce a bit more rounding error than
necessary? That question is a main theme
throughout Section 1. Section 1.3 dis-
cusses guard digits, a means of reducing
the error when subtracting two nearby
numbers. Guard digits were considered
sufficiently important by IBM that in
1968 it added a guard digit to the double
precision format in the System/360 ar-
chitecture (single precision already had a
guard digit) and retrofitted all existing
machines in the field. Two examples are
given to illustrate the utility of guard
digits.

The IEEE standard goes further than
just requiring the use of a guard digit. It
gives an algorithm for addition, subtrac-
tion, multiplication, division, and square
root and requires that implementations
produce the same result as that algo-
rithm. Thus, when a program is moved
from one machine to another, the results
of the basic operations will be the same
in every bit if both machines support the
IEEE standard. This greatly simplifies
the porting of programs. Other uses of
this precise specification are given in
Section 1.5,

2.1 Floating-Point Formats

Several different representnhons of real

have been prop d, but by far
the most wldaly used ls the floating-point
reprt int represen-
tations have a base B (w}nch is always
assumed to be even) and a precision p, If
8 = 10 and p = 3, the number 0.1 is rep-
resented as 1.00 x 10~'. If 8 =2 and
p = 24, the decimal number 0.1 cannot

1

of other are floating
slasi, ond signed logarithm (Matula and Kornerup
1985; Swartzlander and Alexopoules 1976].

Floating-Point Arithmetic 4 7

100%2% 101%3® 110%2" 1.11x3*

!
T
2 3

T t + 1

4 13] 7

Figure 1. Normalized numberswhen 8=2,p= 9, epin = —1, €, = 2.

be represented exactly but is approxi-
mately 1.10011001100110011001101 x
2-4. In general, a floating-point num-
ber will be represented as +d.dd -+ d
xf¢, where d.dd --- d is called the
significand® and has p digits. More pre-
cisely, xd,.dydy +«- d,_, X B* repre-
sents the number

t(dy+d 1+t +d,_fPD)ge,
0<d <p. (1)

The term floating-point number will
be used to mean a real number that can

be exactly represented in the format un-
der discussion. Two other par

B%= or smaller than 1.0 x 8=, Most of
this paper discusses issues due to the
first reason. Numbers that are out of
range will, hnwever, be discussed in Sec-
tions 2.2.2 and 2
Floa'.mg pomt representatwns are not
For both
0.01 x 10 and 1.00 x 10! represent
0.1. If the leading digit is nonzero [d,, # 0
in eq. (1)), the representation is said to
be normalized. The floating-point num-
ber 1.00 x 10~ i5 normalized, whereas
0.01 x 10! is not. When $=2, p=3,
Cnp = =1, and e, =2, there are 16
normallzed ﬂoatmg -point numbers, as
shown in Fxgure 1. The bold hash marks

iated with floati -
tations are the largest nnd allest al-

correspond to bers whose significand
is 1.00. Requinng that a flontmg point

lowable exponents, e,,,, and e, . Since
there are §° possuble slgniﬁcands and
€mar ~ €mip + 1 possible exponents, a
floating-point number can be encoded in

102, (€quay — €min + 1)] +(loga(87)] +1

its, where the final +1 is for the sign
bit. The precise encoding is not impor-
tant for now.

There are two reasons why a real num-
ber might not be exactly representable as
a floating-point number. The most com-
mon situation is illustrated by the deci-
mal number 0,1. Although it has a finite
decimal representahon, in binary it has
an infinite
Thus, when 8 = 2 the number 0.1 lies
strictly between two floating-point num-
bers and is exactly representable by nei-
ther of them. A less common situation is
that a real number is out of range; that
is, its absolute value is larger than 8 x

2This term was introduced by Forsythe and Moler
[1867) and has generally replaced the oldor term
mantissa.

p d makes the
representation umque Unfortunately,
this restriction makes it impossible to
represent zero! A natural way to repre-
sent 0 is with 1.0 x 8%==~1 gince this
preserves the fact that the numerical or-
dering of tive real bers cor-
T to the lexicographi ordermg
of their ﬂuatmg pomt representatxons.
When the exponent is stored in a % bit
field, that means that only 2% — 1 values
are ble for use as exp ts, since
ane must be reserved to represent 0.

Note that the x in a floating-point
number is part of the notation and differ-
ent from a floating-point multiply opera-
tion. The meaning of the X symbol
should be clear from the context. For
example, the expression (2.5 x 10~%) x
(4.0 x 102) involves only a single float-
ing-point multiplication.

This tho usual where the
coxponent is stored to the left of the significand

ACM Computing Survaya, Vol. 23, No 1, March 1991

8 . David Goldberg

1.2 Relatlve Error and Ulps

Since rounding error is inherent in {loat-
ing-point computation, it is important e
have a way to measure this error. Con-
sider the floating-point format with g =
10 and p = 3, which will be used
thronghout thw section. If the result of a

jon is 3.12 x 10~2
and the answer when computed to infi-
nite precision is .0314, it is clear that
this is in error by 2 units in the last
place. Similarly, if the real number
.0314159 is represented as 3.14 x 10-2,
then it is in error by .159 units in the
last place. In gencml, if the floating-point
number d.d --- d x 8¢ is used to repre-
sent z, it IS in error by |{d.d .+ d-
(2/8%] 87~ units in the last place.* The
term ulps will be used as shorthand for
“units in the last place.” If the result of
a calculation is the floating-point num.
ber nearest to the correct result, it still
might be in error by as much as 1/2 ulp.

Another way to measure the difference
between a floating-point number and the
real number it is approximating is rela-
tive error, which is the difference be-
tween the two numbers divided by the
real number. For example, the relative
error committed when approximating
3.14169 by 8.14 x 10° is .00159/3.14159

= ,0005.

Tn compute the relative error that cor-
responds to 1/2 ulp, observe that when a
real number is approximated by the
cloaeﬁt possible floating-point number

ddd - dd X B¢ ghe absolute error can be

as large as 900---008’ X 8¢ where g is
the digit 8/2. This error is ((8/2)8" P) X
A¢. Sinco numbora of tho form d.dd

dd x B° all have this same absolute error
but have values that range between 8¢
and B x B¢ the relative error ranges be-
tween ((8/2)8") x */8° and ((6/2)3 7

4Unloss the number z is largor than gf==*) op
smaller than §%w. Numbors that are out of range
in this fashion will not be considered until further
notice.

ACM Computing Surveys, Vol. 23, No 1, March 1991

X B¢/B°*1. That is,

1 1]
—pr g = Lg-»
23 s2ulpszﬁ . @)
In particular, the relative error corre-
sponding to 1/2 ulp can vary by a factor
of 8. This factor is called the wobble.
Setting ¢ = (8/2)8~" to the largest of
the bounds in (2), we can say that when a
real number is rounded to the closest
floating-point number, the relative error
is always bounded by ¢, which is referred
to as machine epsilon.

In the example above, the relative er-
ror was .00159/3.14159 = 0005. To avoid
such small numbers, the relative error is
normally written as a factor times ¢,
which in this case is ¢ = (8/2)8°7 =
5(10)~° = .005. Thus, the relative error
would be expressed as ((.00159/
3.14159)/.005)¢ = 0.1e¢.

To illustrate the difference between
ulps and relative error, consider the real
number x = 12 35. It is approximated by
% = 1.24 x 10". The error is 0.5 ulps; the
relative error is 0.8¢. Next consider the
computation 8 x. The exact value is8x =
98.8, whereas, the computed value is 8%
=9.92 x 10%, The error is now 4.0 ulps,
but the relative error is still 0.8¢. The
error measured in ulps is eight times
larger, even though the relative error is
the same. In general, when the base is 8,
a fixed relative error expressed in ulps
can wobble by a factor of up to 8. Con-
versely, as eq, (2) shows, a fixed error of
1/2 ulps results in a relative error that
can wobble by 8,

The most natural way to measure
rounding error is in ulps. For example,
rounding to tha noarost floating.point
number corresponds to 1/2 ulp. When
analyzing the rounding error caused by
various formulas, however, relative crror
is a better measure. A good illustration
of this is the analysis immediately fol-
lowing the proof of Theorem 10. Since ¢
can overestimate the effect of rounding
to the nearest floating-point number by
the wobble factor of 8, error estimates of
formulas will be tighter on machines with
asmall 8.

‘When only the order of magnitude of
rounding error is of interest, ulps and ¢
may be used interchangeably since they
differ by at most a factor of 8. For exam-
ple, when a floating-point number is in
error by n ulps, that means the number
of contaminated digits is log,n. If the
relative error in a computation is ne,
then

contaminated digits = loggn. (3)

1.3 Guard Dlgits

One method of compuung the d:ﬂ‘erence

t two floati s i8 to
compute the dxﬂ‘erence exactly, then
round it to the nearest ﬂoatmg -point
number. This is very expenswe if the
operands differ greatly in size. Assumin,|
p=38, 215 x 102 -1.25 x 10~° would
be calculated es

x = 2.16 x 10'?
y = .0000000000000000125 x 102
x — y = 2.1499999999999999875 x 102,

which rounds to 2.15 x 102, Rather than
using all these digits, fl

Floating-Point Arithmetic . 9

wrong in every digit! How bad can the
error be?

Theorem 1

Using a floating-point format with pa-
rameters 8 and p end computing differ-
ences using p digits, the relative error of
the result can be as large as 8 — 1.

Proof. A relative error of 8§ -1 in
the expression x — y occurs when x =
1.00---0and y=.pp** p, where p=
B — 1. Here y has p digits (all equal to
0). The exact difference is x — y = g7°.
When computing the answer using only
p digits, however, the rightmost digit of

y gets shlﬂ,ed off, so the computed differ-
ence is B-7*, Thus, the error is 87 —
AP+ = B-P(8 - 1), and the relatwc er-
ror is P8 - 1)/67F

When 8 = 2, the absolute error can be
as large as the result, and when g = 10,
it can be nine times larger. To put it
another way, when g = 2, (8) shows that
the number of contaminated digits is
logg(1/¢€) = log,(27) = p. That is, all of
the p digits in the result are wrongl

hardware normally operates on a ﬁxed
number of digits. Suppose the number of
digits kept is p and that when the
smaller operand is shifted right, digits
are simply discarded (as o] 2p))must‘l to

rounding), ’I‘hen 2.15 x 10% - 1.25 x
10-5 become:

x=2.16 x 10®

y = 0.00 x 10'2

x-y=2.15x 1012,
The answer is exactly the same as if the
difference had been cnmputed exactly
then Take
10.1 - 9.93. This becomes
x=1.01x% 10!
y = 0.99 x 10!
x-y= .02x10%.
The correct answer is .17, so the com-
puted difference is off by 30 ulps and is

pp one extra digit is added to
guard agamst this situation (a guerd
digit). That is, the smaller number is
truncated to p + 1 digits, then the result
of the subtraction is rounded to p digits.
With a guard digit, the previous example
becomes

=1.010 x 10!
» = 0.993 x 10!
x-y= .017 x 10,

and the answer is exact. With a single
guard digit, the relative error of the re-
sult may be greater than ¢, as in 110 —
8.69:

x =1.10 x 10?
y= .085x10?
x -y =1.0156 x 102

This rounds to 102, compared with the
correct answer of 101.41, for a relative
error of .006, which is greater than

ACM Computing Surveys, Vol. 23, No. 1, March 1901

10 . David Goldberg

€ = .005. In general, the relative error of
the result can be only slightly larger than
e. More precisely, we have Theorem 2.

Theorem 2

If x and y are floating-point numbers in a
format with B and p and if subtraction is
done with p + 1 digits (i.e., one guard
digit), then the relative rounding error in
the result is less than 2¢.

This theorem will be proven in Section
4.1. Addition is included in the above
theorem since x and y can be positive
or negative.

1.4 Cancellation

Section 1.3 can be ized by saying
that without a guard digit, the relative
error committed when subiracting two
nearby quantities can be very large. In
other words, the evaluation of any ex-
pression containing a subtraction (or an
addition of quantities with opposite signs)
could result in a relative error so large
that all the digits arc meaningless (The-
orem 1). When subtracting nearby quan-
tities, the most significant digits in the
operands match and cancel each other.
There are two kinds of cancellation:
catastrophic and benign.

Catastrophic cancellation occurs when
the operands are subject to rounding er-
rors. For example, in the quadratic for-
mula, the expression b* — 4ac occurs.
The quanmi.es 5% and 4 ac are subject to
rounding errors since they are the re-
su]t,s of floating- pomt mult.lpllcations

arer d to the

ﬂouting -point number and so are accu-
rate to within 1/2 ulp, When they are
subtracted, cancellation can cause many
of the accurate digits to disappear, lea\'-
ing behind inly digits cont

by rounding error. Hence the difference
might have an error of many ulps. For
example, consider b = 3.34, a=1.22,
and ¢ = 2.28. The exact value of &% —
4ac is .0292. But b* rounds to 11.2 and
4ac rounds to 11.1, hence the final an-
swer is .1, which is an error by 70 ulps
even though 11.2 - 11.1 is exactly equal

ACM Computing Surveys, Vol. 23, No 1, March 1991

to .1. The subtraction did not introduce
any error but rather exposed the error
introduced in the earlier multiplications.

Benign cancellation occurs when sub-
tracting exactly known quantities. If x
and y have no rounding error, then by
Theorem 2 if the subtraction is done with
a guard digit, the difference x - y has a
very small relative error (less than 2¢).

A formula that exhibits catastrophic
cancellation can sometimes be rear-
ranged to eliminate the problem. Again
consider the quadratic formula

—-b+ Vb2 - dac
nT—a,

—-b- Vb® - 4ac
e @

When b2 » ac, then 5% - 4ac does not
involve a cancellation and V3% — 4ac =~
| &]. But the other addition (subtraction)
in one of the formulas will have a catas-
trophic cancellation. To avoid this, mul-
tiply the numerator and denominator of
ry by —b- Vb3 - dac (and similarly
for r,} to obtain

2¢
e —
YT _b- Vb - dac
2¢
rg=

-6+ Vb -4ac ©

If b2 % ac and & > 0, then computing r,
using formula (4) will involve a cancella-
tion. Therefore, use (5) for computing r,
and (4) for ry. Oun the other hand, if
‘b_< 0, use (4) for computing r, and (5)
or ry.

The expression x2 — y? is another for-
mula that exhibits catastrophic cancella-
tion. It is more accurate to evaluate it as
(x ~ y{x +)5 Unlike the quadratic

Althwgh the expression {(x - y)(x + ¥) does not
cause a cnummphlc anmllntion it is shightly less
accurate than %% - y? if x>y or x<y. In this
case. (* = ¥} + y) has three rounding crrors, bm
x2 ~ y* has only two since the rounding error co!
mitted when computing the smaller of %* and _y
does not affect the final subtraction,

formula, this improved form still has a
zuhtmctmn, but it is a benign cancella-

Floating-Point Arithmetic ~ + 11

replaced with a bonign one. We next pre-
sent more mterestmg examples of formu-

tion of T ding er-
vor, not & catastrophic one. By Theorem
2, the relative error in x — y is at most
2¢. The same is true of x + y. Multiply-
ing two quantities with a small relative
error results in a product with a small
relative error (see Section 4.1).

To avoid confusion between exact and
computed values, the following notation
is used. Whereas x — y denotes the exact
difference of x and y, x @y denotes the
computed difference (i.e., with rounding
error). Similarly @, ®, and @ denote
computed addition, multiplication, and
dlxwvislon. respectwely A]l caps indicate

las
that can be rewritten to exhibit only
benign cancellation.

The area of a triangle can be expressed
directly in terms of the lengths of its
sides a, b, and c as

= s(s-a)(s-b)(s-c),
+b+
where s = %. (6)
Suppose the triangle is very flat; that is,
a=b+c¢. Then s=~a, and the term
(s ~ a) in eq. (6) subtracts two nearby
bers, one of which may have round-

puted value of a fi , as in
LN(x) or SQRT(x). Lowercase functions
and traditional mathematical notation
danote their exact values as in In(x)
and
Alt.hough (x@y)®(x ® y) is an ex-
cellent approximation of x2 - y*%, the
floating-point numbers x and y uught
themselves be approximations to some
true quantities £ and j. For example, &
and # might be exactly known decimal
numbers that cannot be expressed ex-
actly in bmary In this case, even though
x © y is a good approximation to x — y,
it can have a huge relative error com-
pared to the true expression £ - §, and
so the advantage of (x + y)(x - y) over
x%2 — y?isnotas d Since

ing error. For example, if e =9.0, b=¢
= 4.53, then the correct value of s is
9.03 and A is 2.34. Even though the
computed value of s (9.05) is in error by
only 2 ulps, the computed value of A is
3.04, an error of 60 ulps.

There is a way to rewrite formula (6)
so that it will return accurate results
even for flat triangles {Kahan 1986]. It is

= [(Ia +(b+ c))(c— (a- b))
x(c + (a-b))(a+ (b-)" /4,
axbzc. (7)

If a, b, and ¢ do not satisfy a=b=c¢,
mmply rename them before applying (7).

ing (x4 y}x—y) is about the same
amount of work as computmg x% - y3,it
is clearly the preferred form in this case.
In general, however, replacing a catas-
trophic cancellation by a benign one is
not worthwhile if the expense is large
because the input is often (but not al-
ways) an approximation. But eliminat-
ing a cancellation entirely (as in the
quadratic formula) is worthwhile even if
the data are not exact. Throughout this
paper, it will be assumed that the float-
ing-point mputs to an algorlthm are ex-
act and that the \{3 as

It is straightforward to check that the
right-hand sides of (6) and (7) are alge-
braically ideatical. Using the values of
a, b, and c above gives a computed area
of 2.35, which is 1 ulp in error and much
more accurate than the first formula.

Although formula (7) is much more
accurate than (6) for this example, it
would be nice to know how well (7) per-
forms in general.

Theorem 3

accurately as possible.

The expression x? — y® is more accu-
rate when rewritten as (x — yXx+ y)
because a catastrophic cancellation is

The rounding error incurred when using
(7) to compute the area of a triangle ie at
most 1le, provided subtraction is per-
formed with a guard digit, ¢ s .005, and
square roots are computed to within 1/2
ulp.

ACM Computing Surveys, Vol. 23, No. 1, March 1801

12 . David Goldberg

The condition that ¢ < .005 is met in
virtually every actual floating-point sys-
tem. For example, when §=2, p=8
ensures that ¢ < .005, and when 8 = 10,
p =3 is enough.

In statements like Theorem 3 that dis-
cuss the relative error of an expression,
it is understood that the expression is
computed using floating-point arith-
metic. In particular, the relative error is
actually of the expression

(SQRT(a @(b ®¢)) @ (c @(a @b))
®(c ®(a 2b)) ® (a B(b @c)))
4. (8)

B of the bersome nature of (8),
in the statement of theorems we will
usually say the computed value of E
rather than writing out £ with circle
notation.

_Error bounds are uxually too pes-

ic. In the given
above, the computed value of (7) is 2.35,
compared with a true value of 2.34216
for a relative error of 0.7¢, which is much
less than 1le. The main reason for com-
puting error bounds is not to get precise
bounds but rather to verify that the
formula does not contain numerical
problems.

A final example of an expression that
can be rewritten to use benign cancella-
tion is (1 + x)", where x < 1. This ex-
pression arises in financial calculations.
Consider depositing $100 every day into
a bank account that earns an annual
interest rate of 6%, pounded daily. If
n =365 and i=,06, the amount of
money accurnulated at the end of one
year is 100[(1 + i/m)" — 1)/(i/n) dol-
lars. If this is computed using 8 = 2 and
p = 24, the result is $37615.45 compared
to the exact answer of $37614.05, a
discrepancy of $1.40. The reason for
the problem is easy to see. The expres-
sion 1 + i/n involves adding 1 to
.0001643836, so the low order bits of i /n
are Jost. This rounding error is amplified
when 1 + i/n is raised to the nth power.

ACM Computing Surveys, Vol. 23, No. 1, March 1891

The troublesome expression (1 + i/n)"
can be rewritten as explnin(l + i/n)),
where now the problem is to compute
In(1 + x) for small x. One approach is to
use the approximation In(l + x) = x, in
which case the payment becomes
$37617.26, which is off by $3.21 and even
less accurate than the obvious formula.
But there is a way to compute In(l + x)
accurately, as Theorem 4 shows
[Hewlett-Packard 1982). This formula
yields $37614.07, accurate to within 2
cents!

Theorem 4 assumes that LN(x) ap-
proximates In(x) to within 1/2 ulp. The
problem it solves is that when x is small,
LN(1 ® x) is not close to In(1 + x) be-
cause 1 ® x has lost the information in
the low order bits of x. That is, the com-
puted value of In(1 + x) is not close to its
actual value when x < 1.

Theorem 4

If In(1 - x) is computed using the for-
mula

In(1 + x)
x forl1 ® x=1
=4{ zIn(1 +x)
m forl1 ® x=1

the relative error is at most 5¢ when 0 <
x < 3/4, provided subtraction is per-
formed with a guard digit, ¢ < 0.1, and
In is computed to within 1/2 ulp.

‘This formula will work for any value of
x but is only interesting for x < 1, which
is where catastrophic cancellation occurs
in the naive formula In(1 + x). Although
the formula may seem mysterious, there
is a simple explanation for why it works.
Write In(1 + x) as xlnQl + x)/x]l =
xp(x). The left-hand factor can be com-
puted exactly, but the right-hand factor
p(x) = In(l + x)/x will suffer a large
rounding error when adding 1 to x. How-
ever, g is almost constant, since In(l +
x) = x. So changing x slightly will not
introduce much error. In other words, if
X = x, computing xu(%) will be a good

approximation to xu(x) =In(l +x). Is
there a value for for which £ and
£ 4+ 1 can be computed accurately? There

Floating-Point Arithmetic . 13

Equipment Corporation’s VAX® comput-
ers. Another school of thought says that
Einco numbers ending in 5 are halfway

is; namely, =1 ® x) © 1, b
then 1 + % is exactly equal to 1 @ x.

The results of this section can be sum-
marized by saying that a guard digit
guarantees accuracy when nearby pre-
cisely known gquantities are subtracted
i Natinm) S f a for-
mula that gives inaccurate results can be
rewritten to have much higher numeri-
cal accuracy by using benign cancella-
tion; however, the procedure only works
if subtraction is performed using a guard
digit. The price of a guard digit is not
high because is merely requires making
the adder 1 bit wider. For a 54 bit double
precision adder, the additional cost is less
than 2%. For this price, you gain the
ability to run many algorithms such as
formula (6) for computing the arca of a
triangle and the expression in Theorem 4
for computing In(1 + x). Although most
modern computers have a guard digit,
there are a few (such as Crays) that
do not.

1.5 Exactly Rounded Operatlans

‘When floating-point operations are done
with a guard digit, they are not as accu-
rate as if they were computed exactly
then rounded to the nearest floating-point
number. Operations performed in this
manner will be called exactly rounded.
The example immediately preceding
Theorem 2 shows that a single guard
digit will not always give exactly rounded
results. Section 1.4 gave several exam-
ples of algorithms that require a guard
digit in order to work properly. This sec-
tion gives examples of algorithms that
require exact rounding.

So far, the definition of _roundi_ng l':as

two p roundings, they
should round down half the time and
round up the other half. One way of ob-
taining this 50% behavior is to require
that the rounded result have its least
significant digit be even. Thus 12.5
rounds to 12 rather than 13 because 2 is
even. Which of these methods is best,
round up or round to even? Reiser and
Knuth [1975] offer the following reason
for preferring round to even.

Theorem 5

Let x and y be floating-point numbers,
and define x,=x, x, = (x, © y) ®
Yooy Xp=(Xyy O ¥) D y. If ® and
© are exactly rounded using round to
even, then eitherx, = xforallnorx, = x,
forallnz1.

To clarify this result, consider g = 10,
p=3 and let x=1.00, y= —.555.
When rounding up, the sequence be-
comes x, © y = 1.56, x, = 1.56 © .555
=101, x, ® y=1.01 ® .555 = 1.57,
and each successive value of x, in-
creases by .01. Under round to even, x,
is always 1.00. This example suggests
that when using the round up rule, com-
putati can gradually drif upward,
whereas when using round to even the
theorem says this cannot happen.
Throughout the rest of this paper, round
to even will be used.

One application of exact rounding oc-
curs in multiple precision arithmetic.
There are two basic approaches to higher
precision. One approach represents float-
ing-point numbers using a very large sig-
nificand, which is stored in an array of
words, and codes the routines for manip-

not been given. Rounding is str

ward, with the exception of how to round
halfway cases; for example, should 12.5
round to 12 ar 137 Ono school of thought
divides the 10 gigits in half, letting
{0,1,2, 3,4} round down and {5,6,7, 8,9}
round up; thus 12.5 would round to 13.
This is how rounding works on Digital

lating these bers in bly lan-
guage. The second approach represents
higher precision floating-point numbers
as an array of ordinary floating-point

SVAX s a d k of Digital
Corporatioa.

ACM Computing Surveys, Vol. 23, No. 1, March 1901

4 - David Goldberg

numbers, where aqding the elements of

the array in pr r

the high precision floating-point ber.
It is this second approach that will be
di d here. The advant. of using

an array of floating-point numbers is that
it can be coded portably in a high-level
language, but it requires exactly rounded
arithmetic.

The key to multiplication in this sys-
tem is representing a product xy as a
sum, where each summand has the same
precision as x and y. This can be done
by splitting x and y. Writing x = x,, + x;
and y = y, + y,, the exact product is xy
=X+ X+ Xy, + 2y, If xand y
have p bit significands, the summands
will also have p bit significands, pro-
vided x,, x4, y,, ¥, can be represented
using | p/2| bits. When p is even, it is
easy to find a splitting. The number
Xo.%; *** X,_, can be written as the sum
of xo.2, -** 2,5, and 0.0 0x,,
=+ x, ;. When p is odd, this simple
splitting method will not work. An extra
bit can, however, be gained by using neg-
ative numbers. For example, if 8 = 2,
p =05, and x = .10111, x can be split as
%, =.11 and x,= —.00001. There is
more than one way to split a ber. A

ulps. Using Theorem 6 to write b = 3.5
—~.024, a =3.6 - .087, and ¢=35 -
.021, b2 becomes 3.6% - 2 x 8,5 x .024
+ .024%, Each summand is exact, so 4?
= 12.25 — .168 + .000576, where the
sum is left unevaluated at this point.
Similarly,

ac = 3.5% ~ (3.5 x .037 + 3.5 x .021)

+.037 x .021
= 12.25 - .2030 + .000777.

Finally, subtracting these two series term
by term gives an estimate for 5% — ac of
0 ® .0350 © .04685 = .03480, which is
identical to the exactly rounded result.
To show that Theorem 6 really requires
exact rounding, consider p=3, § =2,
and x=7. Then m =5, mx = 35, and
m ® x = 32, If subtraction is performed
with a single guard digit, then (m ® x)
© x = 28. Therefore, x, = 4 and x, = 3,
he':me %, not representable with | p/2| =
1 bit.

As a final example of exact rounding,
consider dividing m by 10. The result is
a floating-point number that will in gen-
eral not be equal to m /10, When 8 = 2,
however, multiplying m @10 by 10 will

splitting method that is easy to compute
is due to Dekker [1971], but it requires
more than a single guard digit.

Theorom 6

Let p be the floating-point precision, with
the restriction that p is even when 8 > 2,
and assume that floating-point operations
are exactly rounded, Then ifk = | p/2] is
half the precision (rounded up) and m =
B*+1, x can be split as x=x, +x,
where x, = (M@ x) © (MBx O'x), x,

mir y restore m, provided exact
rounding is being used. Actually, a more
general fact (due to Kahan) is true. The
proof is ingenious, but readers not inter-
ested in such details can skip ahead to
Section 2.

Thoorem 7

When 8 = 2, if m and n are integers with
|m| < 2P-! and n has the special form
n=2"+2’ then (m @ n)®n=m,
provided floating-point operations are
exactly rounded

=x © x,, and each x, is repr

using | p /2] bits of precision.

To sce how this theorem works in an
example, let §=10, p=4, b= 3.476,
a = 3.463, and ¢ = 8.479. Then b% ~ ac
rounded to the nearest floating-point
number is .03480, while 6 ® b = 12.08,
a ® ¢ = 12,05, and so the computed value
of b* — ac is .03. This is an error of 480

ACM Computing Surveys. Vol 23, No 1, March 1891

Proof. Scaling by a power of 2 is
harmless, since it changes only the expo-
nent not the significand. If ¢ =m/n,
then scale n 5o that 2P-' < n < 27 and
scale m so that 1/2 < ¢ < 1. Thus, 27-2
<m<2P Since m has p significant
bits, it has at most 1 bit to the right of
the binary point. Changing the sign of m
is harmless, so assume ¢ > 0.

I §=m © n, to prove the theorem
requires showing that

1
g- —. 9
Ing-mls g ®

That is because m has at most 1 bit right
of the binary point, so rg will round to
m. To deal with the hnlfway case when
| n§ = m| = 1/4, note that since the ini-
tial unscaled m had |m| <27, its
low-order bit was 0, so the low-erder bit
of the scaled m is also 0, Thus, halfway
cases will round to m.

Suppose g=.qq; *>*, and let ¢=

19z -+ qp1. To estimate |ng - m|,
first compite |§ — q| = IN/ZP‘" -
min|, where N is an odd integer.
Since n=2'+2’ and 27" ' s n< 2P,
it must be that n = 2P~ 4 2* for some
k = p - 2, and thus

aN - 27*m

14-al ==

_|@Pt)N - 2etiby

n2p+1~k

The numerator is an integer, and since
N is odd, it is in fact an odd integer.
Thus, |4~ ql = 1/(n2?*'%). Assg

Floating-Point Arithmetic . 15

arithmetic operations introduce a little
more rounding error than necessary? The
answer is that it does matter, because
accurate basic operations enable us to
prove that formulas are “correct” in the
sense they have a small relative error.
Section 1.4 discussed several algorithms
that require guard digits to produce cor-
rect results in this sense. If the input to
those formulas are numbers representing
xmprecxse measurements, however, the

of 3and4b less
interesting. The reason is that the be-
nign cancellation x — y can become
catastrophic if x and y are only approxi-
mations to some measured quantity. But
accurate operations are useful even in
the face of inexact data, because they
enable us to establish exact relationships
like those discussed in Theorems 6 and 7.
These are useful even if every floating-
point variable is only an approximation
to some actual value.

2. (EEE STANDARD

There are two dlﬁ'erent IEEE standards
for floati putation. IEEE 754
is a binary stundard that requires § = 2,
p =24 for single precision and p = 53
for double precision (IEEE 1987). It also

g < @ (the case g > ¢ is similar). Then
ng < m, and

|m=n3|=m-nf=n(qg-7)
=n(g-(g-2""1)

snfet - o)
n2p+l-k

= (271 4 24)27P1 4 2opm %A %

This establishes (9) and proves the theo-
rem.

The theorem holds true for any base 8,
as long as 2' + 27 is replaced by 8' + §.
As 8 gots larger. however, there are
fewer and fewer denominators of the
form 8' + 8’.

We are now in a position to answer the
question, Does it matter if the basic

the preci layout of bits in a
single and double precision. IEEE 854
allows either 8 = 2 or 8 = 10 and unlike
754, does not specify how floating-point
numbers are encoded into bits [Cody et
al. 1984). It does not require a particular
value for p, but instead it specifies con-
straints on the allowable values of p for
single and double precision. The term
IEEE Standard will be used when dis-
cussing properiies common to both
standards.
This sectlon pmvxdes a tout of the IEEE
tandard. Each one
aspect of the standard and why it was
included. It is not the purpose of this
paper to argue that the IEEE standard is
the best possible floating-point standard
but rather to accept the standard as given
and provide an introduction to its use.
For full detail. i tand:
[Cody et al. 1984; Cody 1988; IEEE 1987).

ACM Computing Surveys, Vol. 23, No. 1, March 1991

16 . David Goldberg
2.1 Formats and Oporations
2.1.1 Baso

It is clear why IEEE 854 nllows B8 =10,
Base 10 is how | and

precision (as explained later in this sec-
tion), s0 the 8 = 2 machine has 23 bits of
precision to compare with a range of
21-24 bits for the § = 16 machine.
Another possible explanation for

think about numbers Using 8 = 10 is

iate for calculat

h g 8 = 16 bits has to do with shifi-
ing. When adding two floating-point
s, if their exp are different,

where the result of each opemhon is d:s-
played by the calculator in deci

There are several reasons why IEEE
854 requires that if the base is not 10, it
must be 2. Section 1.2 mentioned one
reason: The results of error analyses are
much tighter when g is 2 because a
rounding error of 1/2 ulp wobbles by a

as a

one of the significands will have to be
shifted to make the radix points line up,
slowing down the operation. In the 8 =
16, p =1 system, all the numbers be-
tween 1 and 16 have the same exponent,
8o no shifting is required when adding

auy of the ‘5)= 105 possible pairs of

factor of § when

error, and error analyses are almost al-
ways simpler when based on relative er-
ror. A related reason has to do with the
effective precision for large bases. Con-
sider 8 =16, p=1 compared to 8§ = 2,
p = 4. Both systems have 4 bits of signif-
icand. Consider the computation of 15/8.
When g = 2, 15 is represented as 1.111
x 2% and 15/8 as 1.111 x 2°. So 16/8 is
exact. When 8 = 16, however, 15 is rep-
resented as F x 16°, where F is the hex-
adecimal digit for 15. But 15/8 is repre-
sented as 1 x 16°, which has only 1 bit
correct. In gencrnl base 16 can lose up to
3 bits, so a precision of p can have an
effective precision as low as 4p ~ 3
rather than 4p.

Since large values of 8 have these
problems, why did IBM choose g8 = 16 for
its system/370? Only IBM knows for sure,
but there are two possible reasons. The
first is increased exponent range. Single
precision on the system/370 has 8 = 16,
»p = 6. Hence the significand requires 24
bits. Since this must fit into 32 bits, this
loavon 7 bits for the exponont and 1 for
the slgn bn. Thus, the magnitude of rep-

8 g from about
16-“‘ to about 162" = 22*, To get a simi-
lar cxponent range when 8 =2 would
require 9 bits of exponent, leaving only
22 bits for the significand. It was just
pointed out, however, that when 8 = 16,
the effective precision can be as low as
4p - 8 = 21 bits, Even worse, when 8 =
2 it is possible to gain an extra bit of

ACM Computing Surveys, Val 23, No. 1, March 1991

t bers from this set. In the
B= 2. pha4 system, however, these

8 from
to 3, and shifting is required for 70 of the
105 pairs.

In most modern hardware, the perform-
ance gained by avoiding a shift for a
subset of operands is negligible, so the
small wobble of 8 =2 makes it the
preferable base. Another advantage of
using 8 = 2 is that there is a way to gain
an extra bit of significance.” Since float-
ing-point numbers are always normal-
ized, the most significant bit of the
significand is always 1, and there is no
reason to waste a bit of storage repre-
senting it. Formats that use this trick
are said to have a hidden bit. It was
pointed out in Section 1.1 that this re-
quires a special convention for 0. The
method given there was that an expo-
nent of e, — 1 and a significand of all
zeros represent not 1.0 x 2%=~1 but
rather 0.

IEEE 754 single precision is encoded
in 32 bits using 1 bit for the sign, 8 bits
for the exponent, and 28 bits for the sig-
nificand. It uses a hidden bit, however,
so the significand is 24 bits (p = 24),
even though it is encoded using only
23 bits.

"This appears to have first been published by Gold-
berg {1867), elthough Knuth [1981 page 211] at-
tribules this idea to Konrad Zuse.

2.1.2 Pracision

The IEEE standard defines four different
ngle, double, single ex-

tended and double extonded. In 754, sin-
gle and double precision correspond
roughly to what most floating-point
hardware provides. Single precision oc-
cupies a single 32 bit word, double preci-
sion two consecutive 82 bit words.
Extended precision is a format that offers
just a little extra precision and exponent
range (Table 1). The IEEE standard only
specifies a lower bound on how many
extra bits extended precision provides.
The minimum allowable double-extended
format is sometimes referred to as 80-bit
format, even though the table shows it
using 79 bits. The reason 15 that hard-
ware ! of reci-
sion normally do not use a hidden bxt and
so would use 80 rather than 79 bits.®

The standard puts the most emphasis
on extended precision, making no recom-
mendation concerning double precision
but strongly recommending that

Implementations should support the extended
format wrruponding to the widest basie format
supported. . .

One ivation for extended 3
comes from calculators, which will often
display 10 digits but use 13 digits inter-
nally. By displaying only 10 of the 13
digits, the calculator appears to the user
¢: a black box that computes exponen-
tials, cosines, and so on, to 10 digits of
accuracy. For the caleulator to compute
functions like exp, log, and cos to within
10 digits with reasonable efficiency, how-
ever, it needs a few extra digits with
which to work. It is not hard to find a
simple rational expression that approxi-
matea log with an error of 500 units in
the last place. Thus, computing with 13
digits gives an answer correct to 10 dig-
its. By keeping these extra 3 digits hid-

"Amxdmxknﬂahnn, ded ision has 64

Floating-Point Arithmetic . 17

den, the calculator presents a simple
model to the operator.

Extended precision in the IEEE stand-
ard serves a similar function. It enables
libraries to compute quantities to within
about 1/2 ulp in single (or double) preci-
sion efficiently, giving the user of those
libraries a simple model, nnmely, that
cach primitive operation, be it a simple
multiply or an invocation of log, returns
a value accurate to thhm about 1/2 ulp.
When using ext
it is important to make sure that its use
is transparent to the user. For example,
on a calculator, if the internal represen-
tation of a displayed value is not rounded
to the same precision as the display, the
result of further operations will depend
on the hidden digits and appear unpre-
dictable to the user.

To illustrate extended precision fur-
ther, consider the problem of converting
between TEEE 754 single precision and
decimal. Ideally, single precision num-
bers will be printed with enough digits so

.that when the decimal number is read

back in, the single precision number can
be recovered. It turns out that 9 decimal
digits are erough to recover a single pre-
cision binary number (sece Section 4.2).
When converting a decimal number back
to its i binary rep!
rounding error as small as 1 ulp is fatal
because it will give the wrong answer.
Here is a situation where extended preci-
sion is vital for an efficient algorithm.
When single extended is available, a
straightforward method exists for con-
verting a decimal number to a single
precision binary one. First, read in the 9
decimal digits as an integer N, ignoring
the decimal pomt From Table 1, p = 32,
and since 10° < 2% ~ 4.3 x 10°, N can
be represented exactly in single ex-
tended Next, find the appropriate power
10* necessary to scale N. Thm will be a
tion of the t of the deci-
mal number, and the position of the
(up until (l]mw) ignored decimal point.

bits of significand because that was the widest
precision across which carry propagnlmn could be
done on the Intol 8087 without increasing the eyele
time [Kahan 1988,

If | P| = 13, this is also
ted exactly, 1 108 =

2“5“ and 5' < 2%, Finally, multiply

(or divide if P < 0) N and 10(”1. If this

ACM Computing Surveys, Vol. 23, No. 1, March 1991

18 + David Goldberg

Table 1. (EEE 764 Format Perameters

Format
Parameter Single Single Extended Double Double Extended
14 24 =32 63 =64
emax #1272 41020 +1023 > +16383
Py -1268 <-1022 -1022 s -18382
Exponent width in bits 8 21 1 =15
Format width in bits 32 =43 84 =178

last operation is done exactly, the closest
binary number is recovered. Section 4.2
shows how lo do the last multiply (or
divide) exactly, Thus, for | P| < 18, the
use of the single-extended format cnabl
9 digit decimal numbers to be converted
to the closest binary number (i.e., ex-
actly rounded). If |P| > 13, single-
extended is not enough for the above
algorithm to compute the r

representation. In the case of single pre-

cision, where the exponent is stored in 8

bits, the bias is 127 (for double precision

it is 1023). What this means is that if &

is the value of the exponent bits inter-

preted as oa{n mmgned mteger, then the
the

% - 127. This is often called the bmed
exponent to dlitmgmsh from the unbi-
ased Al

binary equivalent always, but Coonen
[1984) shows that it is enough to guaran-
tee that the conversion of binary to deci-
mal and back will recover the original
binary number.

If double precision is supported, the
algorithm above would run in double
precision rather than single-extended,
but to convert double precision to a 17
digit decimal number and back would
require the double-extended format.

2.1.3 Exponent

Since the cxponent can be positive or
negative, some method must be chosen to
represent its sign. Two common methods

t ge of f biased
is that tive flout-
ing point numbers can be treated as
integers for comparison purposes.
Referring to Table 1, single precision
has e, = 127 and e,,, = —126. The
reason for having | e,,,.| < eg,, issothat
the reciprocal of the smallest number
(1/2*m=) will not overflow. Although it is
true that the reciprocal of the largest
number will underﬂow. underflow is usu-
ally less serious than overflow. Section
2.1.1 explained that &mn — 1 i8 used for
T ng 0, and Section 2.2 will in-
troduce a use for €nay + 1. In IEEE sin-
gle precision, this means that tho biased

h

range -1=
—127 and Cpax + 1= 128 whereas the
t ge between 0

of repr ti signed bers are
mgn/magmtude and two’s complement.
Sign/) ude is the sy used for

the sign of the significand in the IEEE
formata: 1 bit is uscd to hold the sign; the
rest of the bits represent the magnitude
of the number. The two's complement
representation is often used in integer
arithmetic. In this scheme, a number
is represented by the smallest nonneg-
ative number that is congrucnt to it
modulo 27,

The IEEE binary standard does not
use either of these methods to represent
the exponent but instead uses a biased

ACM Computing Surveys, Vol 23, No. 1, March 1991

and 255, which are exactly the nonneg-
ative numbers that can be represented
using 8 bits.

2.1.4 Operations

The IEEE standard requires that the re-
sult of addition, subtraction, muitiplica-
tion, and division be exactly rounded.
That is, the result must be computed
exactly then rounded to the nearest float-
mg pmnt number (using round to even).

1. inted out that puting
the exact difference or sum of two float-

Floating-Point Arithmetic . 19

ing-point numbers can be very exp
when their exp are substanti 'llv
different. That section introduced guard
digits, whu:h provide a practical way of

diffe while g -
ing that the relative error is small. Com-
puting with a single guard digit,
however, will not always give the same
answer as computing the exact result
then rounding. By introducing a second
guard digit and a third sticky bit, differ-
ences can be computed at only a little
more cost than with a single guard digit,
but the result is the same as if the dlffer-
ence were tly then r
[Goldberg 1990]. Thus, the standard can
be implemented efficiently.

One reason for completely specifying
the results of arithmetic operations is to
improve the portability of software. When
a program is moved between two ma-
chines and both support IEEE arith-
metic, if any intermediate result differs,
it must be becausa of software bugs not
differences in arithmetic. Another ad-

tage of pi ification is that it
makes it easier to reason about floating
point. Proofs about floating point are
hard enough without having to deal with
multiple cases arising from multiple

kinds of aritl Just as int pro-

than proving them ing operations
are exactly rounded.

There is not complete agreement on
what operations a floating-point stand-
ard should cover. In addition to the basic
operations +, —, %, and /, the IEEE
standard also specifies that square root,
remainder, and conversion between inte-
ger and floating point be correctly
rounded. It also requires that conversion
between internal formats and decimal be
correctly rounded (except for very large
numbers). Kulisch and Miranker [1986]
have proposed adding inner product to
the list of operations that are precisely
specified. They note that when inner
products are computed in IEEE arith-
metic, the final answer can be quite
wrong. For example, sums are a special
case of inner pradud.gs and the sum ((2 x
10"% 4+ 10%) — 10-¥) - 10® is exactly
equal to 10~ =%, but on a machine with
IEEE aritk the d result
will be —10-2°_ It is possible to compute
inner products to within 1 ulp with less
hardware than it takes to imple-
ment a fast multiplier [Kirchner and
Kulisch 19871.°

All the operations mentioned in the
standard, except conversion between dec-
lmal and bmary, are reqmred to be

grams can be proven to be t, 50 can
floating-point programs, although what
is proven in that case is that the round-
mg error of the result satisfies certain
ds. Th 4isan ple of such
a proof. These proofs are made much eas-
ier when the operations being reasoned
about are precisely specified. Once an
algerithm is proven to be correct for IEEE
arithmetic, it will work correctly on any
machino supporting the IEEE standard.
Brown {1981] has proposed axioms for
ﬂontmg pomt. that include most of the
int hard Proofs
in this systern cannot however, verify
the algorithms of Sections 1.4 and 1 5,
which require features not present on all
hardware. Furthermore, Brown's axioms
are more complex than simply defining
operations to be performed exactly then
rounded. Thus, proving theorems from
Brown's axioms is usually more difficult

d. The reason is that effi-
cient algontbmn for exactly rolmdmg all
the operations, except conversion, are
known. For conversion, the best known
efficient algorithms produce results that
are slightly worse than exactly rounded
ones [Coonen 1984).

The IEEE standard does not require
transcendental functions to be exactly
rounded because of the table maker’s
dilemma. To illustrate, suppese you are
making a table of the exponential func-
tion to four places. Then exp(1.626) =
5.0835. Should this be rounded to 5.083
or 5.084? If exp(1.626) is computed more
carefully, it becomes 5.08350, then

®Some arguments against including inner product
ns ono of the basic operations arc presented by
Kahan and LeBlanc [1985).

ACM Computing Surveys, Vol 23, No 1, March 1991

20 . David Goldberg

5.083500, then 5.0835000. Since exp is
transcendental, this could go on arbitrar-
ily long before distinguishing whether
exp(1.626) is 5.083500 --- 0ddd or
5.0834999 - - - 9ddd. Thus, it is not prac-
tical to specify that the precision of tran-
scendental functions be the same as if
the functions were computed to infinite
precision then rounded. Another ap-

ch would be to specify transcenden-
tal functions algorithmically. But there
does not appear to be a single algorithm
that works well across all hardware ar-
chitectures. Rational approximation,
CORDIC,' and large tables are three
dlﬂ‘erent techniq used for p g
tr Is on temporary ma-
chines. Esch is appropriate for a differ-
ent class of hardware, and at present no
single algorithm works acceptably over
the wide range of current hardware.

2.2 Special Quantities

On some floating-point hardware every
bit pattern represents a valid floating-
point number, The IBM System/370 is
an example of this. On the other hand,
the VAX reserves some bit patterns to
represent special numbers called re-
served operands. This idea goes back to
the CDC 6600, which had bit patterns for
the special quantities INDEFINITE and
INFINITY.

The IEEE standard continues in this
tradition and has NaNs (Not a Number,
pronounced to rhyme with plan) and in-
finities. Without special quantities, there
is no good way to handle exceptional sit-
uations like taking the square root of a
negative number other than aborting
computation. Under IBM System/370
FORTRAN, the dofault action in re-
sponse to computing the square root of a
negative number like —4 results in the
printing of an error message. Since every

Teblo 2. [EEE 754 Spocial Valyas

Exponent Fraction Represents
emepn, -1 f=0 =0
€=y -1 f20 0./ % 2%mm

Cn 5 € S Cppy - 1rx2
€= tpy, +1 f=0 too
emen,, 1 r+0 NaN

bit pattern represents a valid num-
ber, the return value of square root
must be some floating-point number.
In_the case of System/370 FORTRAN,
V| = 4] = 2 is returned. In IEEE arith-
metic, an NaN is returned in this
situation.

The IEEE standard specifies the fol-
lowing special values (see Table 2); +0,
denormalized numbers, +o and NaNs
(there is more than one NaN, as ex-
plained in the next section). These
special values are all encoded with
exponeats of cither e,,, + 1 or ¢, 1
(it was already pointed out that Olflas an
exponent of e, — 1).

2.2.1 NaNs

Traditionally, the computation of 0/0 or
v~ 1 has been treated as an unrecover-
able error that causes a computation to
halt. There are, however, examples for
which it makes sense for a computation
to continue in such a situation. Consider
a subroutine that finds the zeros of a
function f, say zeroff). Traditionally,
zero finders require the user to input an
interval (a,b] on which the function is
defined and over which the zero finder
will search. That is, the subroutine is
called as zero(f, &, b). A more useful zero
finder would not require the user to in-
put this extra information. This more
general zero finder is especially appropri-
ate for calculators, where it is natural to
key in a function and awkward to then
hnve to specify the domain. It is easy,

CORDIC is an ym for Coordinate Rotati
Digital Computer and is a mcthod of computing
transcendental functions that uses mostly shifts
and adds (.., very few multiplications and divi.
sions) [Walther 1971). It is the method used on both
the Intel 8087 and the Motorola 68881.

ACM Computing Surveys. Vol. 23. No 1, Merch 1991

, to see why most zero finders
requlre a domain, The zero finder does
its work by probing the function f at
various values. If it probed for a value
outside the domain of f, the code for f

Teblo 3. Operatons that Produco an NaN

Floating-Point Arithmetic . 21

nent e, + 1 and nonzero significands.
Imp]ementatlons are free to put system-

Oporation NaN Produced by
+ © 4 (=)
x 0X o
/ 0/0, o fo
REM x RE 0, REM y
- Vx(when z < 0)

5

might well compute 0/0 or V-1, and
the computation would halt, unnecessar-
ily aborting the zero finding process.

This problem can be avoided by intro-
ducing a special value called NaN and
specifying that the computation of ex.
pressions like 0/0 and v— 1 produce
NaN rather than halting. (A list of some
of the situations that can cause a NaN is
given in Table 3.) Then, when zero(f)
probes outside the domain of f, the code
for f will return NaN and the zero finder
can continue. That is, zero(f) is not
“punighed” for making an incorrect
guess, With this example in mind, it is
easy to see what the result of comblmng
a NaN with an ordinary floati

dent information into the signifi-
cand. Thus, there is not a unique NaN
but rather a whole family of NaNs. When
an NaN and an ordinary floating-point
number are combined, the result should
be the same as the NaN operand. Thus,
if the result ol‘ a long computatlon is an
NaN, the d dent informati
in the s:gniﬁeand will be the information
generated when the first NaN in the
tod Aetuall
there is a eavast to the last statement, I
both operands are NaNs, the result will
be one of those NaNs but it might not be
the NaN that was generated first.

2.2.2 infinity
Just as NaNs provide a way to continue
p when expressi like 0/0

or vV — 1 are encountered, infinities pro-

vide a way to continue when an overflow

occurs. This is much safer than simply

returnmg to the largest representable
. As an

number should be. Suppose the final
statement of f is return(— b 4 sqrt(d))/
@2=+a), If d <0, then f should return a
NaN. Since d <0, sqrt(d) is an NaN,
and -b +sqri(d) will be a NaN if the
sum of an NaN and any other number
is a NaN. Similarly, if one operand
of a division operation is an NaN,
the quotxent should be a NaN. In

a NaN participates
in a floating-point operation, the
result is another NaN.

Another approach to writing a zero
solver that does not require the user to
input a domain is to use signals. The
zero finder could install a signal handler
for floating-point exceptions. Then if f
were evaluated outside its domain and
raised an exception, control would be re-
turned to the zero solver. The problem
with this approach is that every lan-
guage has a different method of handling
signals (if it has a method at all), and so
it has no hope of portability.

In IEEE 754, NaNs are represented as
floating-point numbers with the expo-

com-
puting \/::z + 32, when 8=10, p=3,
and €max = 98. ¥ x=3x10° and

=4 % 10, then #* will overflow and
bo replueed by 9.99 x 10%, Similarly y?
and x? + y® will each overflow in turn
and be replaced by 9.99 x 10%. So the
final result will be (9.99 x 10%)'/2 =
38.16 x 10*°, which is drastically wrong.
The correct answer is 6 x 107, In IEEE
arithmetic, the result of x? is o, as is
y2, x® + y%, and Vx2 + y. So the final
result is o, which is safer than
returning an ordinary floating-point
number that is nowhere near the correct
answer.!!

The division of 0 by O results in an
NaN. A nonzero number divided by 0,
however, returns infinity: 1/0 = oo,
=1/0 = =, The reason for the distinc-
tion is this: If f(x) » 0 and g(x)— 0 as

"pine point: Although the defeult in IEEE arith-
metic is to round overflowsd numbers to o, it is
possible to change the default {scc Scction 2.3.2).

ACM Compuling Surveys, Vol. 28, No 1, March 1981

22 . David Goldberg

x approaches some limit, then f{x)/g(x)
could have any value. For example,
when f{x)=sinx and g(x) = x, then
f(x)/g(x)— 1 as x— 0. But when f(x)
=1 - cos x, f(x)/g(x) ~ 0. When
thinking of 0/0 as the limiti

correct value when x = 0: 1/(0 + 0°%) =
1/(0 +) = 1/ = 0. Without infinity
erithmetic, the expression 1/(x+ x~%)
requires a test for x = 0, which not only
adds extra instructions but may also dis-
rupt a pipeline. This example illustrates

of a quotient of two very small nnmbers,
0/0 could represent anything. Thus, in
the IEEE standard, 0/0 results in an
NaN. But when ¢ > 0 and f(x) ~ ¢, g(x)
— 0, then f(x)/g(x)~ +oo for any ana-
lytic functions f and g. If g(x) <0 for
small x, then f(x)/g(x)- —o; other-
wise the limit is + 0. So the IEEE stan-
dard defines ¢/0 = o as longas ¢ # 0.
The sign of o depends on the signs of ¢
and 0 in the usual way, so =10/0 = -
and -10/-0= oo You can distin-
ish b i of over-
flow and getting o because of division by
0 by checking the status flags (which will
be discussed in detail in Section 2.8.3).
The overflow flag will be set in the first
case, the division by 0 flag in the second.
The rule for determining the result of
an operation that has infinity as an
operand is simple: Replace infinity with
a finite number x and take the limit as
x = ©. Thus, 3/w = 0, because
lim,_ ,3/x = 0. Similarly 4 - ® = ~c
and Vo = w. When the limit does not
exist, the result is an NaN, so o /o0 will
be an NaN (Table 3 has additional exam-
ples). This agrees with the reasoning used
to conclude that 0/0 should be an NaN.
When a subexpression evaluates to a
NaN, the value of the entire expression
ig also a NaN. In the case of o, how-
ever, the value of the expression might
be an ordinary floating-point ber be-
cause of rules like 1/eo = 0. Here is a
practical example that makes use of the
rules for infinity arithmetic. Consider
computing the function x/(x* + 1). This
is a bad formula, because not only will it
overflow when =x is larger than
V/BB*==/, but infinity arithmetic will
give the wrong answer because it will
yield O rather than a number near 1/x.
However, x /(x2 + 1) can be rewritten as
1/(x + x~'). This improved expression
will not overflow prematurely and be-
cause of infinity arithmetic will have the

ACM Computing Serveys, Vol. 23, No. 1, March 1991

a general fact; namely, that infinity
arithmetic often avoids the need for spe-
cial case checking; however, formulas
need to be carefully inspected to make
sure they do not have spurious behavior
at infinity [as x/(x* + 1) did).

2.2,3 Signed Zero

Zero is rep d by the exp t
emn — 1 and a zero significand. Since the
sign bit can take on two different values,
there are two zeros, +0 and -0. If a
distinction were made when comparing
+0 and -0, simple tests like if (x = 0)
would have unpmdlctable behavior, de-
pcndmg on t the sign of x. Thus, the IEEE
parison so that
+0 = —0 rather than -0 < +0. Al-
though it would be possible always to
ignore the sign of zero, the IEEE stan-
dard does not do so. When a multiplica-
tion or division involves a signed zero,
the usual sign rules apply in computing
the sign of the answer. Thus, 3(+0) =
and +0/- 8 = - 0. If zero did not have a
sign, the relation 1/(1/x) = x would fail
to hold when x = too. The reason is
that 1/— o and 1/+ o both result in 0,
and 1/0 results in + oo, the sign informa-
tion having been lost. One way to restore
the identity 1/(1/x) = x is to have
only one kind of infinity; however,
that would result in the disastrous
consequence of losing the sign of an
overflowed quantity.

Another example of the use of signed
zero concerns underflow and functions
that have a discontinuity at zero such as
log. In IEEE arithmetic, it is natural to
define log0 = —o and log x to be an
NaN when x < 0. Suppose x represents
a small negative number that has under-
flowed to zero. Thanks to signed zero, x
will be negative so log can return an
NaN. If there were no signed zero,
however, the log function could not

distinguish an underflowed negative

Floating-Point Arithmetic . 23
IEEE ittee decided, h , that

number from 0 and would therefore have
to return —oo. Another le of a

the advantages of using signed zero out-
the disad

function with a di inuity at zero is
the signum function, which returns the
sign of a number.

Probably the most interesting use of
Blgned zero occurs in complex nrlf.hmehc

2.2.4 Denormalized Numbers

Consider normalized floating-point num-
berswith 8 = 10, p = 3,and e, = —98.

\/l/z = 1/\/_ This is certamly true
when z 2 0. If z=_—1, the obvious com-
putat.ion nges VIJ/=1=vV=-1=iand
1/V=1=1/i = —i. Thus, 1/z#
1/Vz! The problem can be traced to the
fact that square root is multivalued, and
there is no way to select the values so
they are continuous in the entire com-

plex plane. Sq root is
huwever, if a branch cut consisting of all
real bers is excluded from

consideration, This leaves the problem of
what to do for the negative real numl
which are of the form —-x + i0, where
x > 0. Signed zero provides a perfect way
to resolve this problem. Numbers of the
form —x + i(+0) have a square root of
ivz, and numbers of the form —-zx +
i(—0) on the other side of the branch cut
have a square root with the other sign
(- V). In fact, the natural formulas for
computing v/ will give these results.

Letusreturnto 1/z=1/Vz. If z =
-1= -1+ i0, then

1/z=1/(-1+i0)
_ 1(-1 - i0)
T (-1+i0)(-1-i0)

= (-1 i0)/((-1)* - 0?)
= -1+i(-0),

so V1/z= /=14 i(-0) = —i, while
1/Vz=1f/i = —i, Thus, IEEE arith-
metic preserves this identity for all z.
Some more sophisticated examples are
given by Kahan [1887). Although distin-
guishing between +0 and -0 has advan-
tages, it can ly be

For example, signed zero destroys the
relation x=y e 1/x=1/y, which is
false when x= +0 and y = —-0. The

The bers x = 6.87 X 10-% and y=
6.81 x 10-% appear to be perfectly ordi-
nary floating-point numbers, which are
more than a factor of 10 larger than the
ber 1.00 x

10-%, They have a strange property,
Ixowever x © y =0 even though x # yl
The reason is that x —y = .08 x 10~%7
= 8.0 x 10~ is too small to be repre-
sented as a normalized number and so
must be flushed to zero.

How important is it to preserve the
property

x=yoax—-y=0? (10)

It is very easy to imagine writing the
code fragment if (x #y) then z=1/
(x - y) and later having a program fail
due to a spurious divigion by zero. Track-
ing down bugs like this is frustrating
and tlme consuming. On a more philo-
hi level, text.
books often point out ; that even though it
is currently impractical to prove large
programs correct, designing programs
with the idea of proving them often re-
sults in better code. For example, intro-
ducing invariants is useful, even if they
are not going to be used as part of a
proof. Floating-point code is just like any
other code: It helps to have provable facts
on which to depend. For example, when
analyzing formula (7), it will be helpful
toknow that x/2 < y<2xmx © y=x
y (see Theorem 11). Similarly, know-
ing that (10) is true makes writing reli-
able floating-point code easier. If it is
only true for most numbers, it cannot be
used to prove anything.
The IEEE standard uses denormal-
ized'? numbers. which guarantee (10), as

2 They are called subnormal in 854, denormal in
764,

ACM Computing Survoys, Vol 23, No. 1, March 1991

24 . David Goldberg

N0 fme et -t Prantd
[]
0 . Bemet) ﬂ'-‘" Fl-”

Figuro 2, Flush to zero

well as other uscful relations, They are
the most controversial part of the stan-
dard and probably accounted for the long
delay in getting 754 approved. Most
high-performance hardware that claims
to be IEEE compatible does not support
denormalized numbers directly but
rather traps when consuming or produc-
ing denormals, and leaves it to software
to simulate the IEEE standard.’® The

Recall the example § =10, p = 3, ¢,
= -98, x=6.87 x 10-%, and y = 6.81
x 10-97 d at the beginning of
this ucuon With denormnls, x — y does
not flush to zero but is instead repre-
sented by the denormalized number
.6 x 107 This behavior is called
gradual umierﬂow. It is easy to verify
that (10) always holds when using

idea behind denormalized numbers goes
back to Goldberg [1967] and is simpl

| underflow.
Figure 2 illustrates denormalized
b e top ber line in the

When the exponent is e, , the signifi-
cand does not have to be normalized. For
example, when B= 10 p=38, and e,
= -98, 1.00 X 10~ is no longer the
smailest ﬂoating -point b

figure shows normalized floating-point
numbers. Notice the gap between 0 and
the smallest normalized number 1.0 X
B%==, If the result of a floating-point cal-

0.98 x 10°% is also a ﬂonting—point
number.
‘There is a small snag when 8 = 2 and
a hidden bit is being used, since a num-
ber with an exponent of e, will always
have a slgmf cand grenu:r ﬂmn or equal
tol0b of the g bit.
The solution is similar to that used to
p! 0 and is ized in Table
2. The exponent e, — 1 is used to rep.
resent denormals. More formally, if the
bits in the significant field are b,,
bg,...,b,_; and the value of the expo-
nent is e, then when e > ey, — 1, the
being represented is 1.5,b, -+
1 X B‘ wl:cn:us when € = Uy = 1,
tﬁ being repr d is 0.b,5,
-+ bp_y X 2¢*1. The +1 in the exponent
is neéded because denormals have an ex-
ponent of e;,, not ey, — 1.

3his 1s the couse ol‘ ane ol‘ the most t.rouhluomc
nlpvcu of the that

rflow often run
that uses software traps.

slower on |

ACM Computing Survoys, Vol. 23, No 1, March 2991

lation falls into this gulf, it is flushed
to zero. The bottom number line shows
what happens when denormals are added
to the set of floating-point numbers. The
“gulf” is filled in; when the result of a
calculation is less than 1.0 X g%, it is
represented by the nearest denormal.
When denormalized numbers are added
to the number line, the spacing between
ad_]acen'. ﬂoatmg pomt numbers varies in

way: are ei-
ther the same length or differ by a factor
of B. Without denormals, the spacing
abruptly changes from B"” 18%a o Bfom,
which is a factor of 87-, rather than the
orderly change by a factor of 8. Because
of this, many algorithms that can have
large relative error for normalized num-
bers close to the underflow threshold are
well behaved in this range when gradual
underflow is used.

Without gradual underflow, the simple
cxpression x + y can have a very large
relative error for normalized inputs, as
was seen above for x = 6.87 x 10~% and
y=6.81x 10-97, Large relative errors

can happen even witl , as

the following example shows [Demmel
1984). Consider dividing two complex
numbers, a + ib and ¢ + id. The obvious
formula

a+ib act+bd +i be — ad
c+id cE+d? | F+dt
suffers from the problem that if either
t of the d tor ¢ + id is
larger than /F B*==/2, the formula will
overflow even though the final result may
be well within range. A better method of
computing the quotients is to use Smith’s
formula:

a+b(dfc) . b-ald/c)
v @/ Tierd(aso
at+ib if |d] < |e|
e+id b+a(c,’d) -a+b(c/d)

d+c(c/d) " d + cc/d)
if |d]| 2 |el].
(1)
Applying Smith’s formula to
2-10% 4+ i10-%
4-10°% 4+ i(2-10-%)

gives the correct answer of 0.5 with grad-
ual underflow, It yields 0.4 with flush to
zero, an error of 100 ulps. It is typical for
denormalized numbers to guarantee er-
ror bounds for arguments all the way
down to 1.0 X §fe=,

2.3 Exceptions, Flags, and Trap Handlers

‘When an exceptional condition like divi-
swn by 2610 Or overflow occurs in

tic, the default is to deli
rcsult and continue, Typical of the de-
fault results are NaN for 0/0 and v —
and o for 1/0 and overflow. The preeed-
ing sections gave examples where pro-
ceeding from an exception with these
default values was the reasonable thing
to do. Whon any oxcoption occurs, o sta-
tus flag is also set. Implementations of
the IEEE standard are required to pro-
vide users with a way to read and write
the status flags. The flags are “sticky” in

Floating-Point Arithmetic . 25

that once set, they remain set until ex-
plicitly cleared. Testing the flags is the
only way to distinguish 1/0, which is a
genuine infinity from an overflow.

i inui fon in the
face of exception conditions is not appro-
priate. Section 2.2.2 gave the example of
2/(x%+1). When x> /BB« the
denominator is infinite, resulting in a
final answer of 0, which is totally wrong.
Although for this formula the problem
can be solved by rewriting it as 1/
(x + x~1), rewriting may not always
solve the problem. 'l'he IEEE standard
strongly that impl
tions allow trap handlers to be installed.
Then when an exception occurs, the trap
handler is called instead of setting the
flag. The value returned by the trap
handler will be used as the result of
the operation. It is the responsibility
of the trap handler to either clear or set
the status flag; otherwise, the value of
the flag is allowed to be undefined.

The IEEE standard divides ti
into five classes: overflow, underﬂow, di-
vision by zero, invalid operation, and in-
exact. There is a separate status flag for
each class of exception. The meaning of
the first three exceptions is self-evident.
Invalid operation covers the situations
listed in Table 3. The default result of an
operation that causes an invalid excep-
tion is to return an NaN, but the con-
verse is mot true. When one of the
operands to an operation is an NaN, the
result is an NaN, but an invalid excep-
tion is not raised unless the operation
also satisfies one of the conditions in
Table 8.

The inexact exception is raised when
the result of a floating-point operation is
not exact. In the 8 = 10, p = 3 system,
3.5®4.2 = 14.7 is oxact, but 3.5 ®4.3
=15.0 is not exact (since 3.5:4.3 =
15.05) and raises an inexact exception.
Section 4.2 discusses an algorithm that
uses the i A
of tho behavior of all five oxcoptions lu
given in Table 4.

There is an implementation issue con-
nected with the fact that the inexact ex-
ception is raised so often. If floating-point

ACM Computing Surveys, Vol. 23, No. 1, March 1991

26 . David Goldberg

Tadle 4, Exceptons in IEEE 754

Exception Result When Trops Disabled Argument to Trap Handler

Overflow tewor £x,,, Round(x2~%)
Underflow 0, & 2%== or denormal Round(x2*)
Divide by zero o Oper:

Invalid NaN Operands
Inexact round(x) round(x)

*x Is the cxact result of the opem!(m a = 192 for single precision, 1538 for

double, and xp,, = 111+ 11 x 2=

hardware does not have flags of its own
but instead interrupts the operating sys.
tem to signal a floating-point exception,
the cost of inexact exceptions could be
prohibitive. This cost can be avoided by
having the status flags maintained by
software. The first time an exception is
raised, set the software flag for the ap-
propriate class and tell the floating-point
hardware to mask off that class of excep-
tions. Then all further cxceptions will
run without interrupting the operating
system. When a user resets that status
flag, the hardware mask is r bled

partial product p, = NI%_, x, overflows for
some k, the trap handler increments the
counter by 1 and returns the overflowed
quantity with the exponent wrapped
around. In IEEE 754 single precision,
erax = 127,80 if p, = 1.45 x 21 it will
overflow and cause the trap handler to be
called, which will wrap the exponent back
inte range, changing p, to 1.45 x 2792
(see below). Similarly, if P underflows,
the would be decr and
the negative exponent would get wrapped
around into a positive one. ‘When all the

2.3.1 Trap Handiers

* One obvious use for trap handlers is for

backward compatibility. Old codes that
expect to be aborted when exceptions oc-
cur can install a trap handler that aborts
the process. This is especially useful for
codes with a loop like do S until (x > =
100). Since comparing a NaN to a num-
ber with <, =, >, =, or = (but not
#) always returns false, this code will go
into an infinite loop if x ever becomes
an NaN.

There is a more interesting use for
trap handlers that comes up when com-
puting products such asII}_, x, that could
poventmlly overflow. One solution is to
use logarithms and compute exp(Z log x,)
instead. The pmblenm with this ap-
proach are that it is less accurate and
costs more than the simple expression
Ix,, even if there is no overflow. There is
another solution using trap handlers
called over/underflow counting that
avoids both of these problems (Sterbenz
1974).

Ths idea is a8 follows: There is a global

ized to zero. Wh the

ACM Computing Surveys, Vol. 23, No. 1, March 1991

multipli are done, if the counter is
zero, “the final product is p,. If the
counter is positive, the product is over-
flowed; if the counter is negative, it un-
derflowed. If none of the partial products
is out of range, the trap handler is never
called and the computation incurs no ex-
tra cost. Even if there are over/under-
flows, the calculation is more accurate
than if it had been computed with loga-
rithms, because each p, was computed
from p,_, using a full-precision multi-
ply. Barnett (1987) discusses a formula
where the full accuracy of over/under-
flow counting turned up an error in ear.
lier tables of that formula.

1IEEE 754 specifies that when an over-
flow or underflow trap handler is called,
it is passed the wrapped-around result as
an argument. The definition of wrapped
around for overflow is that the result is
computed as if to infinite precision, then
divided by 2¢, then rounded to the rele-
vant precision. For underflow, the result
18 multiplied by 2°. The exponent « is
192 for single precision and 1536 for dou-
ble precision, This is why 1.45 x 2!% was
transformed into 1.45 X 2-%2 in the ex-
ample above.

2.3.2 Rounding Modes

In the IEEE standard, rounding occurs
whenever an operation has a result that
is not exact, since (with the exception of
binary decimal conversion) each opera-
tion is computed exactly then rounded.
By default, rounding means round to-
ward nearest. The standard requires that
three other rounding modes be provided;
namely, round toward 0, round toward
+ 0o, and round toward —co, When used
with the convert to integer operation,
round toward — o causes the convert to
become the floor function, whereas, round
toward + o is ceiling. The rounding mode
affects overflow because when round to-
ward 0 or round toward — o is in effect,
an overflow of positive magnitude causes
the default result to be the largest repre-
sentable number, not +co. Similarly,
overflows of negative magnitude will
produce the largest negative number
when round toward + ¢ or round toward
0 is in effect.

One application of rounding modes oc-
curs in interval arithmetic (another is

Floating-Point Arithmetic . 27

correct answer could be anywhere in that
interval. Interval arxthmetxc makes more
sensc when used in comunchon with a
int pack-
age. Jrl‘he ca]culnt.mn is first performed
with some precision p. If interval arith-
metic suggest.s that the ﬁnal answer may
be i ate, putation is redone
with higher and hlgher precisions until
the final interval is a reasonable size.

2.3.3 Flags

The IEEE standard has a number of flags
and modes. As discussed above, there is
ono status flag for each of the five excep-
tions: underflow, overflow, division by
zero, invalid operation, and inexact.
There are four rounding modes: round
toward nearest, round toward + e, round
toward 0, and round toward —e. It is
strongly recommended that there be an
enable mode bit for cach of the five ex-
ceptions. This section gives some exam-
ples of how these modes and flags can be
put to good use. A more sophisticated
is d in Section 4.2.

mentioned in Section 4.2). When using
interval arithmetic, the sum of two num-
bers x and y is an interval [z, Z], where
2zis x @ y rounded toward — and Z is
x @ y rounded toward +co. The exact
result of the addition is contained within
the interval [z, Z}. Without roundmg
modes, muzrval arithmetic is usually im-

ing =(x y.
(1-¢and z=(x) (1 + ¢), where ¢
is machine epsilon. This results in over-
estimates for the size of the intervals.
Since the result of an operation in inter-

val arithmetic is an interval, in general -

the input to an operation will also be an
interval. If two intervals [x,) and [y, y]
are added, the result is [z, Z), where z is
x © y with the rounding mode set to
round toward —o, and Z is £ ® Z with
the rounding mode set toward + .
When a floating-point calculation is
performed using interval arithmetic, the
final answer is an interval that contains
the exact result of the calculation. This
is not very helpful if the interval turns
out to be large (as it often does), since the

Conmder writing a subroutine to com-
pute x", wherc n is an integer. When
a > 0, a simple routine like

PositivePower(x,n) {
while (n is even) {
= XeX

x
n=n/2
}

u=x

while (true) {
n=n,
it (n = = 0) return u
X=xXex
ifmnisodd)u=usx

}

will compute x".

If n <0, the most accurate way to
compute x" is not to call Positive-
Power(l/x, —n) but rather 1/Posi-
tivePower(x, —n), because the first
expression multiplies n quantities, each
of which has a rounding error from the
division (i.e., 1/x). In the second expres-
sion these are exact (i.e., x) and the final
division commits just one additional

ACM Computing Surveys, Vol. 23, No 1, Merch 1981

28 . David Goldberg

rounding error. Unfortunately, there is a
slight snag in this strategy. If Positive-
Power(x, —n) underflows, then either
the underflow trap handler will be called
or the underflow status flag will be set.
This is incorrect, because if x~" under-
flows, then x" will either overflow or be
in range.' But since the IEEE standard
gives the user access to all the flags, the
subroutine can easily correct for this.
It turns off the overflow and underflow
trap enable bits and saves the overflow
and underflow status bits. It then com-
putes 1/PositivePower(x, - n). If nei-
ther the overflow nor underflow status
bit is set, it restores them together with
the trap enable bits. If one of the status
bits is set, it restores the flags and redoes
the calculation using PositivePower
(1/x, —n), which causes the correct ex-
ceptions to occur.

Another example of the use of flags
occurs when computing arccos via the
formula

arccos x = 2arctan .
+x

If arctan(e) evaluates to = /2, then ave-
cos(—1) will correct.ly evaluate to
2)==b of infinity arith-
mutlc Thero is a small snag, however,

the of (1 -)/
(1 + x) will cause the divide by zero ex-
ception flag to be sot, even though arc-
cos(—1) is not exceptional. The solution
to this problem is straightforward. Sim-
ply save the value of the divide by zero
flag before computing arccos, then re-
store its old value after the computation.

3. BYSITCMS ASPECTS

The design of almost every aspect of a
computer _system rcqunres knowledgo
about fl g point, C

P

M1t can be in range because if x <1, n <0, aud

x~" ig just a tiny bit smaller than the undcrﬂow
tbres ld 2%a», then x” e 27¢me < 2% and so
may not overflow, since in all IEEE precisions,
~lpn < Cag-

ACM Computing Surveys. Vol 23, No. 1, March 1991

tures usua]ly have floating-point instruc-
tions, p must g those
floating-point instructions, and the oper-
ating system must decide what to do
when exception conditions are raised for
those floating-point instructions. Com-
puter system designers rarely get guid-
ance from numerical analysis texts,
which are typmally aimed at users and
writers of not at

designers.

As an example of how plausible design
decisions can lead to unexpected behav-
ior, consider tho following BASIC
program:

q =3.0/7.0

if q = 3.0/7.0 then print “Equal™:
else print “Not Equal”

When compiled and run using Borland’s
Turbo Basic!® on an IBM PC, the pro-
gram prints Not Equal! Thls exomple
will be analyzed in Section 3.2.1.

Incidentally, some people think that
the solution to such anomalies is never to
compare floating-point numbers for
equality but instead to consider them
equal if they are within some error bound
E. This is hardly a cure all, because it
raises as many questions as it answers.
What should the value of £ be? If x <0
and y > 0 are within E, should they re-
ally be considered equal, even though
they have different signs? Furthermore,
the relation defined by thisrule. a ~ b «
}a ~ b| < E, is not an equivalence rela-
tion because a~b and b~c do not
imply that a ~ ¢.

3.1 Instruction Sets

It is common for an algorithm to require
a short burst of higher precision in order
to produce accurate results, One example
occurs_in the quadratic formula [~b
= Vb? — dac /2a. As discussed in Sec-
tion 4.1, when b2 = 4ac, rounding error
can contaminate up to half the digits in
the roots computed with the quadratic

15Turbo Basic is a registered trademark of Borland
International, Inc.

formula. By performmg the subealcula-
tion of b2 — 4 ac in double precision, half
the double precision bits of the root are
lost, which means that all the single pre-
cision bits are preserved.

The computation of 3* — 4ac in double
precision when each of the quantities a,
b, and ¢ are in single precision is easy if
there is a multiplication instruction that
takes two single precision numbers and
produces a double precision result. To
produce the exactly rounded product of
two p-digit numbers, a multiplier needs
to generate the entire 2 p bits of product,
although it may throw bits away as it

. Thus, hardware to compute a
double-precision product from single-pre-
cision operands will normally be only a
little more expensive than a gingle-preci-
sion multiplier and much]ess cxpensive
than a doubl . De-
spite this, modern instruction sets tend
to provide only instructions that produce
a result of the same precision as the
operands.’®

If an instruction that combines two
single-precision operands to produce a
double-precision product were only useful
for the quadratic formula, it would not be
worth adding to an instruction set. This
instruction has many other uses, how-
ever. Consider the problem of solving a
system of linear equations:

0%+ GpXp 4 0t +ay,x, = by
%y + Gz Xy + o +ay,x,= by

Gy + GupXz + 0t +8,, %, = by,

which can be written in matrix form as
Ax = b, where

Gy Gg T Gy,
A= ™ b T Cae
Gy G v G,

"This is probably becatse designers like “orthogo-
nal” instruction sots, where the precisions of a
floating-point instruction are independent of the
ne_uml_ opcntwu ﬁni:mx‘a special case for multi-

Floating-Point Arithmetic . 29

Suppose a solution x'¥! is ted by
some method, perhaps G i ellmma-
tion. There is a simple way to improve
the accuracy of the result called iterative

impr First t
E=AxM — b, (12)
Then solve the system
Ay =¢. (13)

Note that if x is an exact solution,
then ¢ is the zero vector, as is y.
In general the computation of { and y
will incur roundlng error, s0o Ay~ § =
Ax” b = A(xW = x), where x is the

) true soluti Then y =~
x‘" - x, 50 an improved estimate for the
solution is

2D = g _ y, (14)
The threa steps (12), (132 and (14) can be
re , rep lacing x with x®, and

) vnth x” This argument that U+
ls more accurate than x' is only infor-
mal. For more information, see Golub
and Van Loan (1989].

When perfnrmmg iterative improve-
ment, £ is a vector whose elements are
the diffe of nearby i
point numbers and so can suffer from
catastrophic cancellation. Thus, iterative
lmpravement is not very useful unless

= AxV ~ b is computed in double pre-
cuzion Once again, this is a case of com-
puting the product of two singlo-precision
numbers (A and :“’). where the full
double-precision result ia needed.

To summarize, instructions that multi-
ply two floating.point numbers and re-
turn a product with twice tho precision of
the operands make a useful addition to a
floatmg -point instruction set. Some of the

of this for pilers are dis-
cussed in the next section.

3.2 Languages and Compilers

The interaction of ilers and floati
point is discussed in Farnum [1988], and
much of the discussion in this section is
taken from that paper.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

30 . David Goldberg

3.2.1 Ambiguity
Ideally, a language dcﬁmhon should de-
fine the of the ge pre-

cisely enough to prove statements about
programs. Whereas this is usually true
for the integer part of a lang lan-

numbers. For example, the expression
(x +y) + 2 has a totally different answer
than x + (y + 2 when x = 10%,
y=-10%, and z= 1 (it is 1 in the for-
mer case, 0 in the latter). The impor-
tance of preservmg parentheses cannot

guage definitions often have a large gray
area when it comes to floating point
(modula-3 is an exception [Nelson 1991]).
Perhaps this is due to the fact that many
language designers belicve that nothing
can be proven about floating point, since
it entails rounding error. If so, the previ-

d. The algorithms pre-
sented in Theorems 3, 4, and 6 all depend
on it. For example, in Theorem 6, the
formula x), = mx ~ (mx - x) wnuld re-
duce to x, = x if it were not for paren-
theses, thereby destroying the entire
algorithm. A language definition that

d ot uire parentheses to bc
ous ions have d ated the fal- hgenir;:i ‘sreq |‘e P fm-n o
lacy in this reasoning. This section o) . or
discusses some common gray areas in Subex i luati is impre-

language definitions and gives sugges-
tions about how to deal with them.
Remarkably cnough, some languages
do not clearly specify that if x is a float-
ing-point variable (with say a value of
3.0/10.0), then every occurrence of (say)
10.0 «x must have the same value. For
example Ada,'” which is based on
Brown's model, scems to imply that
floating-point arithmetic only has to sat-
isfy Brown's axioms, and thus expres-
sions can have one of many possible
values, Thinking about floating point in
this fuzzy way stands in sharp contrast
to the IEEE model, where the result of
each floating-point operation is precisely
defined. In the IEEE model, we can prove
that (3.0/10.0) * 3.0 evaluates to 3 (Theo-
rom 7). In Brown’s model, we t

cisely defined in many languages. Sup-
pose ds is double precision, but x and y
are single precision. Then in the expres-
sion ds + x +y, is the product performed
in single or double precision? Hero is
another example: In x +m/n where m
and n ave integers, is the division an
integer operation or a floating-point one?
‘There are two ways to deal with this
problem, neither of which is completely
satisfactory. The first is to require that
all variables in an expression have the
same type. This is the simplest solution
but has some drawbacks. First, lan-
guages like Pascal that have subrange
types allow mixing subrange variables
with inl;eger variables, =o it is somewhat
bizarre prohibit mixing single- and

Another ambiguity in most language
definitions concerns what happens on
overflow, underflow, and othcr excep-
tions. The IEEE st d ly spec-

variables. Another prob-
lem concerns constants. In the expres-
sion 0.1 » X, most languages interpret 0.1
to be a single-precision constunt Now

the progr

ifies the behavior of ions, so
languagos that use the standard as a
model can avoid any ambiguity on this
point.

Another gray area concerns the inter-
pretation of parentheses. Due to roundoff
errors, the associative laws of algebra do
not necessarily hold for floating-point

¥i5da is o registered trademark of the U §. Govern-
ment Ada joint program office

ACM Computing Surveys, Vol. 23, No 1, March 1991

cbangc the declaration of all the
floating-point variablos from eingle to
double precision. If 0.1 is still treated as
a single-precision constant, there will be
a compile time error. The programmer
will have to hunt down and change every
floating-point constant.

The second approach is to allow mixed
expressions, in which case rules for
subexpression evaluation must be pro-
vided. There are a number of guiding
examples. The original definition of C
required that every floating-point expres-

sion be d in doubl
[Kermghan and Ritchie 1978), Thxs leuds
to lies like the

ately proceeding Section 3.1. The expres-
sion 3.0/7.0 is computed in double
precision, but if q is a slngle-precision
vanab]e, the quotieat is rounded to sin-
gle precision for storage. Since 3/7 is a
repeat.mg binary trachon, its t

Floating-Point Arithmetic . 31

cause both operands are single precision,
as is the result.

A more i
evaluation rule is as follows. Fm;t as-
sign each upemtlon a tentative precigion,
which is the maxlmum of the precision of

LIRS | h

its ds. This t has to be
carried out from the leaves to the root of
the exp tree. Then, perform a sec-

value in double precision is different from
its stored value in single precision. Thus,
the comparison ¢ = 3/7 fails. This sug-
gesta that computmg every expresslon in
the h pr ble is not a
good rule.

Another guiding example is inner
products. If the inner product has thou-
sands of terms, the rounding error in the
sum can become substantial. One way to
reduce this rounding error is to accumu-
late the sums in double precision (this
will be discussed in more detail in Sec-
tion 3.2.8). If d is a double-precision
variable, and x{] and y[] are single preci-
sion arrays, the inner product loop will
look like d = d 4+ x{il » y{il. If the multi-
plication is done in single precision, much
of the advantnge of double-precision ac-
cumulation is lost because the product is
truncated to single preclsmn just before
being added to a

ond pass from the root. to the leaves. In
this pass, assign to each operation the
maximum of the tentative precision and
the precision expected by the parent. In
the case of ¢ = 3.0/7.0, every leaf is sin-
gle precision, so all the operations are
done in single precision. In the case of
d = d 4 x[i] s yli], the tentative precision
of the multiply operation is single preci-
sion, but in the second pass it gets pro-
moted to double precision because its
parent operation expects a double-preci-
sion operand. And in y = x +single
(dx - dy), the addition is done in single
precision. Farnum [1988) presents evi-
dence that this algorithm is not difficult
to implement.

The disadvantage of this rule is that
the evaluation of a subexpression de-
pends on the expression in which it is
embedded. 'I'hx; can have some annoying

'or]

variable, "

A rule that covers the previous two
examples is to compute an expression in
the highest precision of any variable that
occurs in that expression. Then q =
3.0/7.0 will be computed entirely in sin-
gle precision'® and will have the Boolean
value true, whereas d = d 4 xlil « yli]
w:ll ba computed in double P i

bl

T you
are debnggmg a program and want to
know the value of a subexpression. You
cannot simply type the subexpression to
the debugger and ask it to be evaluated
because the value of the subexpression in
the program depends on the expression
in which it is embedded. A final com-
ment on subexpresalon is that since con-

g g the full a p

cision sccumulnmm This ruln is too sim-
plistic, however, to cover all cases
cleanly. If dx and dy are double-preci-
sion variables, the expression y = x4
single(dx — dy) contains a double-preci-
sion variable, but performing the sum in
double precision would be pointless be-

‘*This 0 the that 3.0 is
asi b 3.0D0 is a dou-
hle-prmon constant.

verting decimal const. to binary is an
operation, the evaluation rule also af-
fects the interpretation of decimal con.
stants. This is especially important for
constants like 0.1, which are not exactly
representable in binary.

Another potential groy arca occurs
when a 1
tion as one of its built-in operatxons Un-
like the basic nrithmetn: operations, the
value of exp tiation is not al ob-
vious (Kahan and Coonen 1982, If »
is the exponentiation operator, then
(~—8)++3 certainly has the value -27.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

32 . David Goldberg

However, (—3.0)+ = 3 0 is prob!emahml
If the = » op pow-
ers, it would compute (- 30)*#3.0 as

~3.0% = =27, On the other hand, if the
formula x” = e”'*% * is used to dofne £3d
for real a: ts, then & on
the log function, the result ‘could be a
NaN (using the natural definition of
log(x) = NaN when x < 0). If the FOR-
TRAN CLOG function is used, however,
the answer will be —27 because the ANSI
FORTRAN standard defines CLOG
(-3.0) to be ixlog3 [ANSI 1978). The
programming language Ada avoids tlns

which means 0° = 1.!° Using this defini-
tion would unamblguously define the cx-

for all arg te and
in particular would define (-38.0)++3.0
to be —27.

3.2.2 IEEE Standard

Section 2 discussed many of the features
of the IEEE standard. The [EEE stan-
dard, however, says nothing about how
these features are to be accessed from a
programmmg language. Thus, there is
usually a

problem by only defi
tion for integer powers, while ANSI
FORTRAN prohibits raising a negative
number to a real power.

In fact, the FORTRAN standard says
that

Any arithmetic operation whose result is not
} 1ly defined is prohibited. ..

point hardware that supports the stan-
dard and programming languages like C,
Pascal, or FORTRAN. Some of the IEEE
capabilitics can be accessed through a
library of subroutine calls. For example,
the IEEE standard requires that square
root be exactly rounded, and the square
root function is often implemented di-
rectly in hardware This functionality is

Unfortunately, with the introd
of oo by the IEEE standard. t,he mean-

easily d via a library square root
ti Other aspects of the st d,

ing of not h d is no
longer totally clear cut. One definition
might be to use the method of Section
2.2.2. For example, to detamune the
value of a® t ana-

, are not so easily implemented
as subroutmes For cxample, most com-
puter languages specify at most two
ﬂontgng point types, whereas, the IEEE

lytic functions fand g with the property
that f{x) +aand g(x)—~bas x—~0.If
f(x)¥2) always approaches the same
limit, this should be the value of a®. This
definition would set 2® = oo, which seems
quite reasonable. In the case of 1.0,
when f(x) = 1 and g(x) = 1/x the limit
approaches 1, but when f(x) = 1 ~ x and
g(x)=1/x the limit is e. So 1.0* should
be an NaN. In the case of 0°, f(x)5® =
e8I AD Ginee f and g are analytical
and take on the value of 0 at 0, f(x) =
a,x’ + ugx + +++ and g(x) = dyx" +
byx® 4 - Thus,

lim g(x)log f(x)
20
= HHA:!og(x(a, +azx+)
b
= I'maxlog(alx) =0.

So f(x)#" —¢®=1 for all f and g,

ACM Computing Surveys, Vol. 23, No. 1, March 1991

d has four different precisions (al-
though the recommended configurations
are single plus single extended or single,
double, and double extended). Infinity
provides another example. Constants to
represent *oo could he supplied by a
subroutine. But that might make them
unusable in places that require constant
expressions, such as the initializer of a
constant variable.

A more subtle situation is mampulat
ing the state jated with a
tion, whero the state consists of tha
rounding modes, trap enable bits, trap
handlers, and exception flags. One ap-
proach is to provide subroutines for read-
ing and writing the state. In addition, a

¥The conclusion that 0% =1 depends on the re-
striction / be nonconstant. If this restriction is
removed, then letting / be the identically O func.
tion gives O as o possible value for lim, o f(x)5'=,
and 80 0° would have to bo defined to be 2 NaN.

single call that can atomically set a new
value and return the old value is often
useful. As the examples in Section 2.3.8
showed, a common pattern of modifying
IEEE state is to change it only within
the scope of a block or subroutine. Thus,
the burden is on the programmer to find
each exit from the block and make sure
the state is restored. Lnnguuge support
for setting the state precisely in the scope
of a block would be very useful here.
Modula-3 is one language that imple-
ments this idea for trap handl

Floating-Point Arithmetic . 33

cisely, and it depends on the current
value of the rounding modes. This some-
times conflicts with the definition of im-
plmt roundmg in type conversions or the
und fi in 1
This means that programs that wish
to use IEEE rounding cannot use the
natural Janguage primitives, and con-
versely the language primitives will be
inefficient to implement on the ever-
g ber of IEEE 1

[Nelson 1991].
A number of minor pmnts need to be
idered when impl g the IEEE
standard in a language. Since x - x =
+0 for all x,° (+0) — (+0) = +0, How-
ever, —(+0) = -0, thus —x should not
be defined as 0 — x. The introduction of
NaNs can be confusing because an NaN

3.2.3 O

Compiler texts tend to ignore the subject
of floating point. For example, Aho et al.
[1986) mentions replacing x/2.0 with
x #0.5, leading the reader to assume that
x/lOO should be replaced by 0.1 «x.
These two expressions do not, h er,
have the _same semantics on a binary

is never equal to any other ber (in-
cluding another NaN), so x=2x is no
longer alwaysa true, In fact, the expres-
sion x # x is the simplest way to test for
a NaN if the IEEE recommended func-
tion Isnan is not provided. Furthermore,
NaNs are unordered with respect to all
other numbers, s0 x <y cannot be de-
fined as not x>y. Since the intro-
duction of NaNs causes floating-point
numbers to become partially ordered, a
compare function that returns one of
<, =, >, or unordered can make it
easier for the programmer to deal with
comparisons.

Although the IEEE standard defines
the basic floating-point operations to re-
turn a NaN if any operand is a NaN, this
mlght not alwayu be the best deﬁnition
for P For Js
when ing the jate scale
factor to use in plotting a graph, the
maximum of a set of values must be
computed. In this case, it makes sense
for the max operation simply to ignore
NaNs.

Finally, rounding can be a problem.
The IEEE standard defines rounding pra-

*0Unless the rounding raode is round toward — oo,
in whichcase x -~z = -0,

0.1 cannot be repre-
sented exactly in binary. This textbook
also suggests replacing x+y — x+z by
x *(y — 2), even though we have seen that
these two expressions can have quite dif-
ferent values when y = z. Although it
does qualify the statement that any alge-
braic identity can be used when optimiz-
ing code by noting that optimizers should
not violate the language defi mtlon, xt
leaves the imp that fl g-p
semantics are not very xmportant.
Whether or not the language standard
specifies that parenthesis must be hon-
ored, (x +y) + z can have a totally differ-
ent answer than x +(y + 2), as discussed
above.

There is a problem closely related to
preserving parentheses that is illus.
trated by the following code:

eps=1
do cps = 0.5 «eps while (eps +1 > 1)

This code is designed to give an esti

for machine epsilon. If an optimizing
compiler notices that eps + 1> 1 ¢ eps
> 0, the program will be changed com-
pletely. Instead of eomputing the small-
est number x such that 1 @ x is still
greater than x(x = ¢ = §-P), it will com-
pute the largest number x for which x/2
is rounded to 0 (x = 8°==). Avoiding this

ACM Computing Surveys, Vol. 23, No. 1, March 1991

34 . David Goldberg

kind of “optimization” is so important
that it is worth presenting one more use-
ful algorithm that is totally ruined by it.

Many problems, such as numerical in-
tegration x‘md the numencal solutlon of

An optimizer that believed floating-
point arithmetic cbeyed the laws of alge-
bra would conclude that C = [T - S} -

=[S+ Y)~-S)]- Y =0, rendering

These

diffe

t.hc u]gonthm completely usalas
can be

sums with many terms, Because each
addition can potentially introduce an er-
ror as large as 1/2 ulp, a sum involving
thousands of terms can have quite a bit
of rounding error. A simple way to cor-
rect for this is to store the partial sum.
mand in a double-precision variable and
to perform each addition usmg double
p If the calculation is being done
in single precision, performing the sum
in double precision is easy on most com-
puter syst If the calculati is al-

ized by saying
that optlmlma should be extremely cau.
tious when applying algebraic identities
that hold for the mathematical real num-
bers to expressions involving floating-
point variables.
Another way ﬂmt ophmlzers can
h the ties of fl
code involves constants. In the expres-
sion'1.0E-40 + x, there is an implicit dec-
imal to binary conversion operation that
converts the decimal number to a binary
this cannot

(Y

ready being dnue in d Pr

e precision is not s
snmple. One method that is sometimes
advocated is to sort the numbers and add
them from smallest to largest. There isa
much more efficient method, however,
that dramatically improves the accuracy
of sums, namely Theorem 8.

be repr d exactly in binary, the in-
exact exception should be raised. In addi-
tion, the underflow flag should to be set
if the expression is evaluated in smgle
precision. Since the t is

its exact conversion to binary depends on
the current value of the IEEE rounding
modes. Thus, an optimizer that converts
1 0E—40 to binary at compile time would
be ing the tics of the pro-

Theorem 8 (Kahan F {!

Suppose E_,":lxl is computed using the
following algorithm

Then the computed sum S is equal to
:Iéﬂ +8;) + O(NeDT | %1, mIm 18,1
=< 2¢

Using the naive formula Zx, the com-
puted sum is equal to Tx (1 + 6 ,) where
18,1 < (r = Jie. Comparmg this with the
error in the Kahan summauon form-

gram. Constants like 27.5, however, that
are exactly representable in the smallest
available precision can be safely con-
verted at compile time, since they are
always exact, cannot raise any exception,
and are unaffected by the rounding
modes. Constants that are intended to be
converted at compile time should be done
with a constant declaration such as const

pi = 3.14159265.
Common subexpression elimination is
another ple of an optimization that
h floati int ics, as

can (3 -y
illustrated by the following code:
C=A+B;

RndMode = Up

D=As+B;

Allhough A+B may appear to be a com-

ula shows a dramatic impr

Each summand is perturbed by only 2¢
instead of perturbations as large as ne
in the simple formula. Details are in
Section 4.3.

ACM Compuling Burveys, Vol. 23, No 1, March 1991

mon , it is not b the
rounding mode is different at the two
evaluation sites. Three final examples
are x=2x cannot be replaced by the
Boolean constant true, because it fails

when x is an NaN; —x = 0 - x fails for
x= +0 and x <y is not the oppomeof
x2yb NaNs are neith

Floating-Point Arithmetic . 35

The lmplementation of library functions
such as sin and cos is even more difficult,

than nor less than ordinary ﬂoatmg point
numbers.

Despite these examples, there are use-
ful -optimizations that can be done on
floating-point code. First, there are alge-
braic identities that are valld for float-
ing-point b Som les in
IEEE arithmetic are x+y =y+x2x
x=x+x1Xx=xand 0.6 X x=x/2.
Even these simple identities, however,
can fail on a few machines such as CDC
and Cray supercomputers. Instruction
scheduling and inline procedure substi-
tution are two other potentially useful
optimizations.?! As a final example, con-
sider the expression dx = x+y, where x
and y are single precision variables and
dx is double precision. On machines that
have an instruction that multiplies two

the value of these trnnscenden-
tal functions are not rational numbers.
Exact integer arithmetic is often pro-
vided by Lisp systems and is handy for
some problems. Exact floating-point
arithmetic is, however, rarely useful.

The fact is there are useful algorithins
(like the Kahan summation formula) that
exploit (x+y)+2#x+(y+2), and
work whenever the bound

a® b= (a+b)(l+3)

holds (as well as similar bounds for —,
%, and /). Since these bounds hold for
almost all commercial hardware not just
machines with IEEE arithmetic, it would
be foolish for numerical programmers to
xgnun such algorithms, and it would be

single-precision numbers to produce a
double-precision number, dx = x+y can
get mapped to that instruction rather
than compiled to a series of instructions
that convert the operands to double then
perform a double-to-double precision
multiply.

Some compiler writers view restric-
tions that prohibit converting (x + y) + 2
to x+ (y + z) as irrclevant, of intercst
only to programmers who use unportable
tricks. Perhaps they have in mind that
floating-point numbers model real num-
bers and should obey the same laws real
numbers do. The problem with real num-
ber semantics is that they are extremely
expensive to implement. Every time two
n bit numbers are multiplied, the prod-
uct will have 25 bits. Every time two n
bit numbers with widely spaced expo-
nents are added, the sum will have 2n
bits. An algorithm that involves thou.
sands of operations (such as solving a
linear system) will soon be operating on

huge bers and be hoy ly slow.

2!The VMS math librarics on the VAX use a weak
form of inlino procodure substitution in that thoy
use the inexpensive jump to subrottine call rather
than the slower CALLS and CALLG instructions.

for iler writers to de-
atroy / these algorithms by pretending that
floating-point variables have real num-
ber semantics.

3.3 Exception Handling

The topics discussed up to now have pri-
marily concerned systems implications of
accuracy and precision. Trap handlers
also raise some interesting systems is-
sues. The IEEE standard strongly recom-
mends that users be able to specify a trap
handler for each of the five classes of
exceptions, and Section 2.3.1 gave some
applications of user defined trap han-
dlers. In the case of invalid operation
and divisien by zero exceptions, the han-
dler should be provided with the
operands, otherwise with the exactly
rounded result. Depending on the pro-
gramming language being used, the trap
handler might be able to access other
variables in the program as well. For all
exceptions, the trap handler must be able
to identify what operation was being
performed and the precision of its
destination.

The IEEE standard assumes that oper-
ations are conceptually serial and that
when an interrupt occurs, it is possible to
identify the operation and its operands.

ACM Computing Surveys, Vol 23, Na. 1, March 1981

386 . Devid Goldberg

On machines that have pipelining or
multiple arithmetic units, when an ex-
ception occurs, it may not be enough sim-
ply to have the trap handler examine the
program counter. Hardware support for
identifying exactly which operation
trapped may be necessary.

Another problem is illustrated by the
following program fragment:
X=yez
ZmXsW
a=b+c¢c
d=a/x

Suppose the second multiply raises an
exception, and the trap handler wants to
use the value of a. On hardware that can
do an add and multiply in parallel,
an optimizer would probably move the
addition operation ahead of the second
multiply, so that the add can proceed in
parallel with the first multiply. Thus,
when the second multiply traps,a = b 4
c has alrcady been executed, potentially
changmg the result of a. It would not be
le for a piler to avoid this
kmd of optimization because every float-
ing-point operation can potentially trap,
and thus virtually all instruction
scheduling optimizations would be elimi-
nated. This problem can be avoided by
prohibiting trap handlers from accessing
any variables of the program directly.
Instead, the handler can be given the
operands or result as an argument.
But there are still problems. In the
fragment

Xzys2
z=a+b

the two instructions might well be exe-
cutad in parallel. If the multiply traps,
its argument z could already have been
overwritten by the addition, especially
since addition is usually faster than mul-
tiply. Computer systems that support
trap handlers in the IEEE standard must
provide some way to save the value of z,
either in hardware or by having the
compiler avoid such a situation in the
first place.

Kahan has proposed using presubstitu-
tion instead of trap handlers to avoid
these problems. In this method, the user

ACM Computing Surveys, Vol 23, No 1, March 1891

specifies an exception and a value to be
used as the result when the exception
occurs. As an example, suppose that in
code for computing sin x/x, the user de-
cides that x = 0 is so rare that it would
improve performance to avoid a test for
x = 0 and instead handle this case when
a 0/0 trap occurs. Using IEEE trap han-
dlers, the user would write a handler
that returns a value of 1 and installs it
before computing sin x/x. Using presub-
stitution, the user would specify that
when an invalid operation occurs, the
value of 1 should be used. Kahan calls
this presubstitution because the value to
be used must be specified before the ex-
ception occurs. When using trap han-
dlers, the value to be returned can be
computed when the trap occurs.

The advantage of presubstitution is
that it has a straightforward hardware
implementation. As soon as the type of
exception has been determined, it can be
used to index a table that contains the
desired result of the operation. Although
presubstitution has some attractive at-
tributes, the widespread acceptance of the
IEEE standard makes it unlikely to be
widely implemented by hardware manu-
facturers.

4, DETAILS

Various claims have been made in this
paper concerning properties of floating-
point arithmetic. We now proceed to
show that floating point is not black
magic, but rather a straightforward
subject whose claims can be verified
mathematically.

This section is divided into three parts.
The first part represents an intreduction
to error analysis and provides the details
for Section 1. The second part explores
binary-to-decimal conversion, filling in
some gaps from Section 2. The third
part discusses the Kahan summation
formula, which was used as an example
in Section 3.

4.1 Rounding Esror

In the discussion of rounding error, it
was stated that a single guard digit is
enough to guarantee that addition and

subtraction will always be accurate (The-
orem 2). We now proceed to verify this
fact. Theorem 2 has two parts, one for
subtraction and one for addition. The part
for subtraction is as follows:

Theorem 9

If x and y are positive floating-point num-
bers in a format with parameters g and p
and if subtraction is done with p + 1 dig-
its (i.e., one guard digit), then the rela-
tive rounding error in the result is less
than [(8/2) + 11872 = [1 + (2/B)le < 2¢.

Proof. Interchange x and y is neces-
sary so that x > y. It is also harmless to
scale x and y 8o ’r.hat x is represented by
Xo.2y <+ x,_y X 8% If y is represented
a8 ¥g.3, *** ¥p-1, thon the difference is
exact. If y is represented a5 0.y, -+ y,,
then the guard digit ensures that the
oomputed dxfference will be the exact dif-

a fl int num-
ber, so the rounding error is at. most e.In
general, let y=0.0-:0y,, Yisp
and let ¥ be y truncated to p + 1 dlgﬂa
Then,

Y=y
< (8-1)(B7P"1 -0 487P"k),
(15)
From the definition of guard digit, the
computed value of x -y is x -~ ¥
rounded to be a floating-point number;

that is, (x - ¥) + 8, where the rounding
error § satisfies

18] s (—g)w. (16)

The exact difference is x ~ y, so the er-
rorigs (x=y)=(x~3+8)=5-y+8.
There are three cases. If x — y = 1, the
relative error is bounded by
Iy—§+6

]

= ﬂ"[(B 1B+ 4B+ g

< B"(l + —:—) (17)

Floating-Point Arithmetic . 37

Second, if x - ¥ < 1, then & = 0. Since
the smallest that x — y can be is

_kE ok
1.0 - oo.. 00"‘0
>(B-1)(87"+ - +87%)

(where ¢ = § - 1), in this case the rela-
tive error is bounded by

y-y+3é
(B-1)8(8" + - +87")
(B~1)(B' + -+ +87%)
=g8-", (18)

The final case is when z~y<1 but
x — y = 1. The only way this could hap-
penis if x — ¥ = 1, in which case & = 0.
But if 5 = 0, then (18) applies, so again
the relative error i3 bounded by 8°° <
BP(1+8/2). W

When 8 =2, the bound is exactly
2¢, and this bound is achieved for x =
14227 and y =27 2127 jn the
limit as p = w. When adding numbers of
the same sign, a guard digit is not neces-
sary to achieve good accuracy, as the
following result shows.

Theorem 10

If x2 0 and y = 0, the relative error in
computing x + y is at most 2¢, even if no
guard digits are used.

Proof. The algorithm for addition
with %k guard digits is similar to the
algorithm for subtraction. If x = y, and
shift y right until the radix points of x
and y are aligned. Discard any digits
shifted past the p + k position, Compute
the sum of these two p + %k digit num-
bers exactly. Then round to p digits.

We will verify the thcorem when no
guard digits are used; the general case is
similar. There is no loss of generality in
assuming that x>y > 0 and that x is
scaled to be of the form d.d -+ d x §°
First, assume there is no carry out. Then
the digits shifted off the end of y have a

ACM Computing Surveys, Vol. 23, No. 1, March 1991

38 . David Goldberg

value less than §77*! and the sum is at
least 1, so the relative error is less than
BP+1/1 = 2¢. If there is o carry out, the
error from shifting must be added to the
rounding error of (1/2)8~"*2. The sum is
at least B, so the relative error is less
than (877*! + (1/2)5 P8 = (1 +
8/2)87° = 2e.

1t is obvious that combining these two
theorems gives Theorem 2. Theorem 2
gives the relative error for performing
one operahon Comparing the rounding
error of x2 — y% and (x + y)(x — y) re-
quires knowing the relative error of mul-
tiple operations. The reIat.ive error of
Oy is 8, =[x © y)-(x-yV
(x -y whlch satisfies |$,| = 2¢. Or to
write it another way,

O y=(x-y)1+8), |5| =2
(19)

Similarly,

2@ y=(x+y)(1+35), 16215(25.

20)

that Itiplication is per-
fon-ned by computing the exact product
then rounding, the relative error is at
most 1/2 ulp, so

u®v = uv(l +353), 61l se (21)

for any floating point numbers u and v.
Putting these three equations together
(etting u =x © yandv=x @ y)gives
(x©5)Q(x®y)
= (x-y)(1 +8)
x(x+)(1 +8)(1 +35). (22)
So the relative error incurred when com-
puting (x — y}x +y)is
(x©y)®(x ® y) - (22 -»?)
(=*-»%)
= (1 +8,){1 +8,)(1+35;) -1, (23)

ACM Computing Surveys. Vol. 23. No. 1, March 1991

This relative error is equal to 3, + 3, +
83 + 818, + 5,8, + 8,83, which is bounded
by e + 8e¢2. In other words, the maxi-
mum relative error is about five round-
ing errors (since ¢ is a small number, e
is almost negligible).

A similar analysis of (x® x) ©
(y ® y) cannot result in a small value for
the relative error because when two
nearby values of x and y are plugged
into x2 - y?, the relative error will usu-
ally be quite large. Another way to see
this is to try and duplicate the analysis
that worked on (x © y»)®(x @ y),
yielding

(x®x) © (y®y)
=[#2(1 +8,) - ¥2(1 + ;)] (1 + 85)
= ((x2 = y*)(1 +8)) + (3, - 8,)7°)
(1+3).

When x and y are nearby, the error
term (8, - Bz)y can be as large as the
result x? — y%. These computations for-
mally Jusufy our claim that (x—)
(% + ¥) is more accurate than x2 — y2,

We next turn to an analysis of the
formula for the area of a triangle. To
estimate the maximum error that can
occur when computing with (7), the fol-
lowing fact will be needed.

Theorem 11

If subtraction is performed with a guard
digit and y/2<xs2y, then x~y is
computed exactly.

Proof. Note that if x and y have the
same exponent, then certainly x © y is
exact. Otherwise, from the condition of
the theorem, the exponents can differ by
at most 1. Scale and interchange x and y
if necessary s0 0 = ¥ = x and x is repre-
sented 88 xp.x, *** x,_, and y as 0.y,
++* ¥,. Then the algunt}hm for comput-
ing x © y will compute x — y exactly
and round to a floatmg -point number but
1{' the difference is of the form 0.d, -+

» the difference will already be p digits
long. and no rounding is necessary. Since

x5 2y, x-ysy, and since y is of the
fom0.d, -+ d,,s0is x~-y. W

When 8 > 2, the hypothesis of Theo-
rem 11 cannot be replaced by y/8sx <
£; the stronger condition y/2 < x =<2y
is still necessary. The analysis of the
error in (¥ — y)(x + y) in the previous
section used the fact that the relative
error in the basic operations of addition
and subtraction is small [namely, eqs.
(19) ard (20)). This is the most common
kind of error analysis. Analyzing for.
nmula (7), however, requires something
more; namely, Theorem 11, as the follow-
ing proof will show.

Theorem 12

If subtraction uses a guard digit and if a,
b, and ¢ are the sides of a triangle, the
relatwe error in computing (a+ (b +
Ne = (a - b)c+(a~ b))(a + (b -c)
is at most 16¢, provided e < .

Proof. Let us examine the factors one
by one. From Theorem 10, b ® ¢ =
(5 + €)1 + §,), where §, is the relative
error and |§,| < 2¢. Then the value of
the first factnr is(a@ (6@ c)=(a+
(5 ®)1 +8,) = (a+(b+)1 +8,)
X{(1 + 4;), and thus

(a+b+e)(t ~2¢)°
s{a+ (b+c)(1-26)](1-2¢)
sa® (b ® o)
= [a+ (b +c)(1+2e)](1 + 2¢)
s (a+b+)1+ 26
This means that there is an 5, so that
(a® (b ®c))=(a+bd+c)(1+9),
Im| s2e (24)

The next term involves the potentially
catastrophic subtraction of cand a © b,
bocauso @ © b may hava rounding or-
ror. Because q, b, and c are the sides of a
triangle, a < b 4 ¢, and combining this
with the ordering cs b <agives as b
+cs2bx2a So a-b satisfies the

Floating-Point Arithmetic . 39

conditions of Theorem 11. This means
a—b=a © b is exact, and hence ¢ ©
{a - b) is a harmless subtraction that
can be estimated from Theorem 9 to be

(c© (s © b)) = (c- (a-B))(1+n),

Izl < 2e. (25)

The third term is the sum of two exact
positive quantities, so

(c® (a © b)) =(c+ (a=b))1+n,),

Ing| = 2¢. (28)
Finally, the last term is

(a® (50 ¢))=(a+ (b-c))+1),

Inl s 26 (27)

ilfsmgl both Theorem 9 and 'I'heorem 10
multiplication is
rounded so that x®y= xy(l + {) with
|| s ¢, then combining (24), (26), (26),
and (27) gives
(a® (5® c))(c© (a ©D))

(c® (a©b))(a® (5O <)

s{e+(b+c)) c-(a-b)
(c+ (a- b))
(a+(b-c))E,

where

E=(1+95)°(1 +n)(1 +ns)(1 +0,)°
A+ 80+ R+ 5).

An upper bound for E is (1 + 2¢)%(1 g
€)°, which expands to 1 + 15¢ + O(e? 2
Some writers simply ignore the O(e*)
term, but it is easy to account for it.
Writing (1 + 26)°(1 + €)® = 1 + 15¢ +
€R(e), R(e) is a polynomial in ¢ with
positive coefficients, so it is an increasing
function of «. Sinco R(.005) = .505, R(<)
< 1 for all ¢ < .005, and hence £ < (1 +
26)%1 + €)® <1+ 16¢. To get a lower
bound on E, note that 1 - 15¢ — eR(¢) <
E; s0o when €< .005, 1 - 16e< (1 —

ACM Computing Surveys, Vol. 23, No. 1, March 1891

40 . David Goldberg

2¢)°(1 ~ ¢)°. Combining these two
bounds yields 1 - 16c < E < 1 + 16e.
Thus the relative error is at most 16e.

u

Theorem 12 shows there is no catas-
trophic cancellation in formula (7).
Therefore, although it is not necessary to
show formula (7) is numerically stable, it
is satisfying to have a bound for the en-
tire formula, which is what Theorem 3 of
Section 1.4 gives.

Proof Theorem 3. Let

g=(a+(b+c))(c- (a-b)
(c+(a-b))(a+ (b-¢))

and

Q=(a® (69 ¢)®(c© (s © b))

®(c® (a©b))®(a® (b Oc)).

‘Then Theorem 12 shows that @ = g(1 +
8), with & < 16¢. It is easy to check that

1- .52)8| s VI= T3] s vI+13]
=1+ .52|4| (28)

provided & < .04/(.52)% =~ .15. Since |5}
< 16¢ < 16(.005) = .08, § does satisfy the
condition. Thus, @ = [q(1 + §)I'?
= g + &), with |§| =< .52|8] =
8.5¢. If square rocts are computed to
within 1/2 ulp, the error when comput-
ing V@ is (1 + §,)(1 + 8,), with |8, | s
e. If B = 2, there is no further error com-
mitted when dividing by 4. Otherwise,
one more factor 1 + 8, with Jb,,] <eis
necessary for the dxvmmn, and using the
method in the proof of Theorem 12, the
final error bound of (1 + §,)(1 + 6,)(1 +
&) is dominated by 1 + §,, with |§,| =
1le. W

To make the heuristic explanation im-
mediately following the of

Theorem 13

If p(x) =In(1 + x)/x, then for 0 s x <
3/4, 1/2 < p(x) = 1 and the derivative
satisfies | y'(x)| = 1/2.

B'oo/‘ Note that u(x)=1-x2/2+
x2/3 — ++- ig an alternating series with
decreasing terms, so for x5 1, p(x) =1
— x/2 = 1/2. It is even easier to see that
because the series for x is alternating,
#(x) s 1. The Taylor series of p'(x) is
also alternating, and if x < 3/4 has de-
creasing terms, s0 -1/2 < p'(x) < -1/2
+2x/3, or —1/2 < #(x) s 0, thus
lK(x)}<1/2. W

Proof Theorem 4. Since the Taylor se-

ries for In,

x2 23
In(l+x)==x > *3 ,

is an alternahng series, 0 < x — In(1 +
x) < x2/2. Therefore, the relative error
incurred when approximating In(l + x)
by x is bounded by x/2. f 1 ® x=1,
then |x] <¢, so the relative errvor is
bounded by /2.

When 1 @ x# 1, define 2 vial @ x
=1+ % Then since 0sx<1, (1 ® x)
© 1 = x. If division and logarithms are
computed to within 1/2 ulp, the com-
puted value of the expression In(l +
/(1 +x)~1)is

In(1 @ x)
(1ex)©1
1
- "(”")(14-5)(1 +35)
=u(2)(1+8)(1+35), (29)
where |8;| <e and }J;| e To esti-
mate p(x), use the mean value theorem,
which says that
#(2) - u(x) = (2 - x)u(£) (30)

for some ¢ betwecen x and 2. From the
definition of %, it follows that | £ - x] =

(1 +68)(Q +3,)

Theorem 4 precise, the next theorem de-
scribes just how closely u(x) approxi-
mates a constant.

ACM Computing Surveys, Vol, 29, No. 1, March 1991

€. Combining this with Theorem 13 gives
|i(2) — m(x)| < €/2 or | u(®)/p(x) = 1|
= ¢/(2] u(x)]) = ¢, which means u(3) =
#(x)}(1 + 8), with |8;] < e. Finally,

multiplying by x introduces a final §,, so
the computed value of xIn(l + x)/((1 +
x)-1)is
zIn(1 + x)
(G+x)-1)

x(1+35)(1+85), |[5]se

1 +8)(1+8)

It is easy to check that if ¢ < 0.1, then
(U481 + 801 + 3Kl +8)=1+3,
with |5 s5e. B

An interesting example of error analy-
sis using formulas (19), (20), and (21)
occurs_in the quadratic formula [-b
+ Vb? - 4ac)/2a. Section 1.4 explained
how rewriting the equation will elimi-
nate the potential Hlati d by
the + operation. But there is another
potential cancellation that cam occur
when computing d = % — 4ac. This one
cannot be eliminated by a simple rear-
rangement of the formula. Roughly
speaking, when b? = 4ac, rounding error
can contaminate up to half the digits in
the roots computed with the quadratic
formula. Here is an informal proof
(another approach to estimating the er-
ror in the quadratic formula appears in
Kahan [1972)).

If b% = 4ac, rounding error can con-
taminate up to half the digits in the roots
computed with the quadratic formulal—b
+ Vb2 — dac)/2a.

Proof Write (b®5) @ (4a®c) =
(531 + 8,) — 4ac(l + 8)X1 + 8;), where
16,| =2¢. Using d = b®— 4dac, this
can be rewritten as (d(1 + §,) — 4ac(3,
= 89))(1 + 8,). To get an estimate for the
size of this error, ignore second-order
terms in 8i, in which the case of the
absolute error is d(5, + &) — 4acly,
where |8,| = |8, — 5| = 2¢. Since d <
4ac, the first term d(, + &3) can be ig-
nored. Ta estimate the second term, use

21, this informal proof, assume # = 2 so multipli-
cation by 4 ia exact and does not require a §,.

Floating-Point Arithmetic . 41

the fact that ax® + bx + ¢ = a(x — r\)}(x
— 1), 80 ar,ry = c. Since b® = 4 ac, then
ry == ry, 80 the second error term is 4 acs,

= 4a%r2s,. Thus, the computed value of
Vd is \/d + 4a®r35, . The inequality

p-asVp-¢* s VpP+ g

sp+gq

shows that +/d +4d’r¥s, = Vd + E,
where | E} < v/4a?r2|5,|, so the abso-
lute error in V@ /2a is about ry/3,.
Since 8, = 877, /5, = 87"/, and thus
the absolute error of r, /3, destroys the
bottom half of the bits of the roots r, =
r,. In other words, since the calculation
o?' the roots involves computing with
vd /2a and this expression does not have
meaningful bits in the position corre-
sponding to the lower order half of r;, the
lower order bits of r, cannot be meaning-

Finally, we turn to the proof of Theo-
rem 6. It is based on the following fact in
Theorem 14, which is proven in the
Appendix.

Theorem 14

Let 0<k<p, and set m = 8* + 1, and
assume floating-point operations are ex-
actly rounded. Then (m®x) © (m®x
©x) is exactly equal to x rounded to
p — k significant digits. More precisely, x
is rounded by taking the significand of x,
imagining a radix point just left of the k
least significant digits and rounding to
an integer,

Proof Theorem 6. By Theorem 14, x, is
x rounded to p— &k ={p/2| places. If
there is no carry out, x) can be repre-
sented with | p/2) significant digits.
Suppose there is a carry out. If x=
%, x; X, 1 X B* rounding adds 1 to
%,_a1, the only way thero can be a carry
out is if x,_;_; =4~ 1. In that case,
however, the low-order digit of x, is 1 +
%, 4., =0, and so again x, is repre-
sentable in | p/2] digits.

AGM Computing Surveys, Vol. 23, No. 1, March 1991

42 . David Goldberg

To deal with x,, scale x to be an inte-
ger satisfying AP~' < x <587 -1, Let x
= X, + ¥, where %, is the p — & high-
order digits of x and %, is the k low-order
digits. There are three cases to consider.
If %< (8/2)8*), then rounding x to
p — k places is the same as chopping and
x, =%, and x,=%, Since X, has at
most k digits, if p is even, then X, has at
most k= {p/2]=|p/2] digits. Other-
wise, §=2 and % < 2*~! is repre-
sentable with & — 1 < [p/2| significant
bits, The second case is when ¥,>
(8/2)8*"; then computing x, involves
rounding up, 80 x, = %, + 8* and x,=
x-x,=x—% ~f*=% - p* Once
again, ¥, has at most % d’igits. 80 it is
representable with [p/2] digits. Finally,
if %, = (B/2)B* ", then x, = %, or %, +
B* depending on whether there is a round
up. Therefore, x, is either (8/2)p*~? or
(8/2)8*1 — g* = —g*/2, both of which
are represented with 1 digit.

Theorem 6 gives a way to express the
product of two single-precision numbers
exactly as a sum. There is a companion
formula for expressing a sum exactly. If
Jx|=|y|, then x+y=(x® y)+(x
O (x © y)) ® y [Dekker 1971; Knuth
1981, Theorem C in Section 4.2.2). When
using exactly rounded operations, how-
ever, this formula is only true for 8 = 2,
not for # = 10 asthe example x = .99998,
y = .99997 shows.

4.2 Binary-to-Decimeal Conversion

Since single precision has p = 24 and
2% < 108, we might expect that convert-
ing a binary number to eight decimal
digits would be sufficient to recover the
original binary number. This is not the
case, however,

Theorem 16

When a binary IEEE single-precision
number is converted to the closest eight
digit decimal number, it is not always
possible to recover the binary b

converting the decimal number to the
closest binary number will recover the
original floating-point number.

Proof. Binary single-precision num-
bers l‘ying in the half-open interval
{10%,2) = (1000, 1024) have 10 bits to
the left of the binary point and 14 bits to
the right of the binary point. Thus, there
are (2'° — 10%)2'* = 393,216 different bi-
nary numbers in that interval. If decimal
numbers are represented with eight dig-
its, there are (21° - 10°)10* = 240,000
decimal numbers in the same interval.
There is no way 240,000 decimal num-
bers could represent 393,216 different bi-
nary numbers. So eight decimal digits
are not erll,ough to l'elimaentx eac‘h gingle-

P inary quely.

To show that nine digits are sufficient,
it is enough to show that the spacing
between binary numbers is always
greater than the spacing between deci-
mal numbers. This will ensure that for
each decimal number N, the interval [N
- 1/2ulp, N + 1/2 ulp) contains at most
one binary number. Thus, each binary
number rounds to a unique decimal num-
ber, which in turn rounds to a unique
binary number.

To show that the spacing betwcen bi-
nary numbers is always greater than the

ing between decimal b con-
sider an interval [10",10"*'], On this
interval, the spacing betw
tive decimal numbers is 10¢**»=9, On
[107,2™), where m is the smallest inte-
ger so that 10™ < 2™, the spacing of
binary numbers is 2™~ and the spac-
ing gets larger further on in the inter-
val. Thus, it is enough to check that
10+ -2 < gm-2¢ Byt in fact, since
10" < 2™, then 10¢*¥-°=10"10"% <
2m10-8 < 22, W

The same argument applied to double
precision shows that 17 decimal digits
are required to recover a double-precision
number.

Binary-decimal conversion also pro-
vides h le of the use of flags.

iquely from the d ! one. If nine
decimal digits are used, however, then

ACM Computing Survoys, Vol. 28, No 1, March 1991

Recall from Section 2.1.2 that to recover
a binary number from its decimal expan-

gion, the decimal-to-binary conversion
must be computed exactly. That conver-
sion is performed by multiplying the
quantities N and 10/?! (which are both
exact if P < 13) in single-extended preci-
sion and then rounding this to single
pmcmlou (or d.wxdlng if P < 0; both cases
putation of
10"’ ! ca!mot be exact it is the combmed
operaticn round (N - 10! 1) that must be
exact, where the rounding is from single
extended to single precision. To see why
it might fail to be exact, take the simple
caseof 8 = 10, p = 2forsingleand p =3
for single extended. If the product is to
be 12.51, this would be rounded to 12.5
as pan of the amgle-extended multiply
to single p

would give 12, But that answer is not
correct, because rounding the product to
single precision should give 13. The error
is a result of double rounding.

By using the IEEE flags, the double
rounding can be avoided as follows. Save
the current value of the inexact flag, then
reset it. Set the rounding mode to round
to zero. Then perform the multiplication
N-10!#), Store the new value of the
inexact flag in ixflag, and restore the
roundmg mode and mexact. flag. If ixflag
i3 0, then N-10!%! is exact, so round
(N - 10121y will bo correct down to the
last bit. If ixflag is 1, then some digits
were truncated, smce round to zero al-
ways tr t ificand of the
product will look hke 1.0y <+- baabyy

« by,. A double-rounding error may oc-
cur if by *oc by =10-++0. A simple
way to account for both cases is to per-
form a logical or of ixflag with bg,. Then
round (N-10'"!) will be computed
correctly in all cases.

4.3 Errors in Summation

Section 3.2.3 mentioned the problem of
accurately computing very long sums,
The simplest approach to improving ac-
curacy is to double the precision. To get a
rough estimate of how much doubling
the precision improves the accuracy of a
sum, let s, =x,, 83=8, ® x5,...,8 =

8,.1 @ x,. Then s, = (1 +34,)(s,_; + %)),

Floating-Point Arithmetic . 43

where |5,| <¢ and ignoring second-
order terms in §i gives

= ix,(l-i- Zija,,)
o): x,(i_js.). (31)

i1

The first equality of (31) shows that
the computed value of Lx; is the same as
if an exact wax rf(d on
perturbed values of x,. The first term x N
is perturbed by ne, tl{le last term x, by
only e. The second equality in (31) shows
that error term is bounded by ne¥ | x,|.
Dnubhng the precision has the effect’ of
squaring e. If the sum is being done in
an IEEE double-precision format, 1/¢ ~

10%8, 50 that ne < 1 for any reasonable
value of n. Thus, doubling the precision
takes the maximum gerturbatlon of ne
and changes it to ne® < e. Thus the 2¢
error bound for the Kahan summation
formula (Theorem 8) is not as good as
using double precision, even though it is
much better than single precision.

For an intuitive explanation of why
the Kahan summation formula works,
consider the following diagram of proce-
dure:

ACM Computing Surveys, Vol. 23, No. 1, March 1881

44 . David Goldberg

Each time a summand is added, there
is a correction factor C that will be ap-
plied on the next loop. So first subtract
the correction C computed in the previ-
ous loop from X, giving the corrected
summand Y. Then add this summand to
the running sum S. The low-order bits of
Y (namely, Y,) are lost in the sum. Next,
compute the high-order bits of ¥ by com-
puting 7 — S. When Y is subtracted from
this, the low-order bits of Y will be re-
covered. These are the bits that were lost
in the first sum in the diagram. They
become the correction factor for the next
loop. A formal proof of Theorem 8, taken
from Knuth [1981) page 572, appears in
the Appendix.

5. SUMMARY

It is not uncommon for computer system
designers to neglect the parts of a system
related to floating point. This is probubly
due to the fact that floating point is given
little, if any, attention in the

that use features of the standard are be-
coming ever more portable. Section 2
gave numerous examples illustrating
how the features of the IEEE standard
can be used in writing practical floating-
point codes.

APPENDIX

This A dix ins two technical
proofs ormtted from the text.

Theorem 14

Let 0<k<p, set m=p*+1, and as-
sume floating-point operations are exactly
rounded. Then (m®x) © (m®x © x)
is exactly equal to x rounded to p -k
significant digits. More precisely, x is
rounded by taking the significand of x.
imagining a radix point just left of the k
least-significant digits, and rounding to
an integer.

Pmnf The proof breaks up into two
cases, def g on whether or not the

science curriculum, This in turn has
caused the apparently widespread belief
that floating point is not a quantifiable
subject, so there is little point in fussing
over the details of hardware and soft-
ware that deal with it.

‘This paper has demonstrated that it is
possible to reason rigorously about float-
ing point. For example, floating-point al-
gorithms involving cancellation can be
proven to have small relative errors if
the underlying hardware has a guard
digit and there is an efficient algorithm
for binary-decimal conversion that can be
proven to be invertible, provided ex.
tended precision is supported. The task
of constructing reliable floating-point

software js made eamer whcn the under-

lying ve of
floating pomt In addmon to the two
les just d (guard digits

and extended precision), Section 3 of
this paper has examples ranging from
instruction set design to compiler opt-
imization illustrating how to better
support floating point.

e increasing acceptance of the IEEE
floating-point standard means that codes

ACM Computing Surveys, Vol 23, No. 1, March 1991

computation of mx = 8*x + x has a carry
out or not.

Assume there is no carry out. It is
harmless to scale x so that it is an inte-
ger. Then the computation of mx = x +
B*x looks like this:

a -+ aabb .-« bb
aa -+ aabb ---bb
2z -+ zzbb + -+ bb ’

where x has been partitioned into two
parts. Tho low-order k. digits are marked
b and the high-order p — % digits are
marked a. To compute m ® x from mx
involves rounding off the low-order %k
digits (the onos marked with b) so

m®x = mx - xmod(B*) + rg*. (32)

The value of r is 1 if .bb - -+ b is greater
than 1/2 and 0 otherwise. More pre-
cisely,

r=1ifabb ---broundstoa + 1,
r = 0 otherwise. (33)

o«

Next compute
m®ax - x = mx - xmod(8*) + rg* - x
= B*(x + r) - x mod(B*).

The picture below shows the computation
of m ® x — x rounded, that is, (m ® x)

© x. The top line is 8*(x + r), where B
is the digit that results from adding r to
the lowest order digit b:

aa---aabb---bB00 .- 00
—bb---bb
22+ 22Z00 - - - 00

If .bb---b < 1/2, then r = 0. Subtract-
ing causes a borrow from the digit
marked B, but the difference is rounded
up, 50 the net effect is that the rounded
difference equals the top line, which is
B*x. .bb:--b>1/2,then r=1,and 1
is subtracted from B because of the bor-
row. So again the result is g*x. Finally,
consider the case .bb:--b=1/2. If r =
0, then B is even, Z is odd, and the
difference is rounded up giving B*=x.
Similarly, when r=1, B is odd, Z is
even, the difference is rounded down, so
again the difference is f*x. To summa-
rize,

(m®x) © x=8". (34)

Combining eqs. (32) and (34) gives
(m ® x) - (m x x) = x —
x mod(8*) + r8*. The result of perform-
ing this computation is

r00---00

aa - aabb - bb
4=bb---bb

aa -+ aa0d--- 00,

The rule for computing r, eq. (33), is the
same as the rule for rounding a‘:‘:
ab---b to p — & places. Thus, comput-
ing mx — (mx - x) in floating-point
arithmetic precision is exactly equal to
rounding x to p — k places, in the case
when x + 8*x does not carry out.

When x + §*x does carry out, mx=

Floating-Point Arithmetic d 45
B*x + x looks like this:

aa---aabb---bb
aa .- aabb ---bb
222 +** 2Zbb --- bb
Thus, m ® x = mx — x mod(*) + wp*,
where w = -2 if Z < /2, but the exact
value of w in unimportant. Next m ® x
— x = B*x - x mod(8*) + wh*. In a pic-
ture
aa:-aabb:--bb00--- 00
—bb---bb
+w

Roundirig gives (m®x) © x = f*x +
wp* - r*, where r=1if .bb---b>
1/2 orif bb:++b = 1/2 and b, = 1. Fi-
nally,

(m®x)- (m®=x © x)
= mx - x mod(8*) + wp*
—(B*x + wp* - rg*)
=x—.n-nod(ﬁ‘) + rg*.

Once again, 7 = 1 exactly when rounding
a--rab:+b to p—% places involves
rounding up. Thus, Theorem 14 is proven
in all cases. W

Thoorem 8 (Kashan Summation Formula)

Suppose .‘:{\le, is computed using the
following algorithm
8 = X(1)
C=0
forj=2to N {

Y =Xjl—-C

T=S+Y

C=T-85-Y

S=T
}
Then the computed sum S is equal to
S=Exl+3)+ ONL|x,|, where
15,] = 2e.

Proof. First recall how the error esti-
mate for the simple formula Yx; went.
Introduce 6, = x;, 8, =(1 +8)s,_, -1
+ x,). Then the computed sum is s,,
which is a sum of terms, each of which
is an x, multiplied by an expression

ACM Computing Surveys, Vol. 23, Neo 1, March 1991

46 . David Goldberg

involving 8,'s. The exact coefficient of x,
i5 (1 +8,) (L + 8g) -~ (1 + 8,). Therefore
by renumbering, the cocfficient of x,
must be (1 + 8,)(1 + 8,) -+ (1 + §,), and
80 on. The proof of Theorem 8 runs along
exactly the same lines, only the coeffi-
cients of x, is more complicated. In de-
tail 85 = ¢, = 0 and
=2 © ey = (25— 6ay)(1 +9y)
=510 y=(5.+n)1+q)
o =(5© 8_,) ©y

= [(s0 = 81) (1 +) - 3:}(1 + &)

where all the Greek letters are bounded
by e. Although the coefficient of x, in s,
is the ultimate expression of interest, it
turns out to be easier to compute the
coefficient of x, in s, — ¢, and ¢;, When
k=1,
a=(s(l+1)-n)1+4)
=n((1+0)1+v) -1)(1 +4)
=x(0 + 7 + o)
(1 +8)(1+my)
n-a=x[l+a)-(o+v+ om)
(1 * 5)](1 +m)
= 31[1 = N1-od —om
=871 ~ ondy] (1 +).

Calling the coefficients of x, in these
expressions C, and S,, respectively, then

C, = 2¢ + O(¢?)
S =14y ~7; +4e? + O(e?).

To get the general formula for S, and
C,, expand the definitions of s, and ¢,,
ignoring all terms involving x, with
i > 1. That gives

s = (s + 1)1 +0)
= [51—1 +(x =)+ 111.)]
(1+q)

= [(8ao1 = €xes) = merea] (1 + 03)

ACM Computing Surveys, Vol. 29, No. 1, March 1991

e =[{ss = s} (L4 1) -] +8,)
= [{(2e-1 = exr) = meacs) (2 + a4)
= J{1 +) +eny(1 4)]

(1+8)
= [{(sn1 = acs)on = mer_y(1 +)
=co (1 +m) + (1 +)]
(1+35,)
= [(31.-1 = ca)a(l +)
=exoa{ye + Mo + 1y + o))
(1+8)
= ((s4-1 = -2} = mex-1)
1+ a,)
"[(ﬁ-: =)ol + 1)
=cantmlo+v. + ’ATA))]
1+8,)
= (8= ca)((1 +)
—a(l+ 7)1 +85))
+opg(-m(1 + o)
+(1a+ mlox+ 7 + am))
(1 +8,))
= {8 - ey)

(1 = ox(vs + 8y + 7253))
+ ch-!‘_'lh + 1

+m{vi + oma)
+(na + mlos + 74 + oma)) 8]
Since S, and C, are only being computed
up to order ¢, these formulas can be
simplified to
Ci = (o, + O(*))S,_,
+{-n+0(&))C,,y
S, = (1 + 2¢? + 0(e))S; ..,
+(2¢ + 0(e?))C, .

-

Using these formulas gives
C, = 0, + O(e?)
S;= 149 ~ 7, + 102 + O(e?),

and, in general, it is casy to check by
induction that

C; =g + O(e?)
Sp=1+4n -7+ (4k + 2)e? + O(?).

Finally, what is wanted is the coeffi-
cient of x, in s,. To get this value, let
%,41 = 0, let all the Greek letters with

subscripts of 2 + 1 cqual 0 and compute

.+1- Then s,,, = s, — ¢, and the coef-
fclent of x, in s, is ‘less than the cocffi-
cient in s,,”, which is S,=1+9 -7
+{@n+2)e2 =14 2¢+ O(ne') []

ACKNOWLEDGMENTS

‘This article was inspired by a course given at Sun
Mierosystem by W. Kahan, ably organized by David
Hough of Sun, from May through July 1988, Its
gim is Lo enable othera to learn about the interac-
tion of floating point and computer systems without
having to got up in time to attend 8:00 am lectures.
Thanks are due to Kahan and many of my col-
leagues at Xerox PARC (especially John Gilbert)
for reading drafts of this papor and providing many
useful commeonts. Reviews from Paul Hilfinger and
an anonymous referee also helped improve the pre-
sentation.

REFERENCES
Ano, A. V., Semw, R., mn p ULLMAY, J. D. 1986.
Principles, Te Tools.
Mdhon Wezley, Readmg. Mass.

ANSI 1978. American National Standard Pro-
gramming Lwagum FORTRAN ANSI Stan-
dard X3.9-1978. ris

Floating-Point Arithmetic . 47

The Role of Interval Methods on &'Jcnllfu' Com-
puting, Ramon E. Moore, cademic Press,
Boston, Mass., pp. 99-107.

Coom J. 1984. Contributions to a proposed

for bhmry nunx point arithmetic.
PhD . of California, Berke-
ley.

DEKKER, '1‘. J.1971. A ﬂoﬂtmg pomt mhmquc for

Numer,
Math. 18, 3, 224-242.

Demuer, J. 1884, Underflow and the rehsblhty of
numerical software. S/IAM J. Sci. Stat. Com-
put. 5,4, 887-919,

Farxum, C. 1988. Compiler support for floating-
point computation. Softw. Pract. Experi. 18,7,
701-709.

Forsytug, G. E., anp MoLer, C. B. 1967. Com-

puter Solution of Linear Akebmk Systems.
l’nnﬁee-Hall Englewood Cliffs, N,

Gorpeere, I. B. 1867. 27 Bits aro ml enough
for 8igit accuracy, Commum. ACM 10, 2,
i 06.

Goropere, D. 1990. Computer arithmetic. In
C Archil A Q ilatic

proach, David Patterson gnd John L. Hen-
nossy, Eds. Morgan Kauwfmann, Los Altos,
Calif., Appendix A.

Go:.un. G.H, wp\’g’n Soan. C.F. 1989 Matrix

Honki:

Preu. Baltimore, MD.

Hawretr Packarp 1982, HP-15C Advanced
Functions Handbook.

IEEE 1987, IEEE Standard 754-1985 for Binary
Floating-Point Arithmetic, IEEE. Reprinted in
SIGPLAN 22, 2, 9-25.

KAIIAN. w. 1912 A Sur\my,Iof Ermr Aml‘ylyll In

1,

ugo-
slnv!u), North Hol)nnd Amswrdnm, vol. 2, pp.
1214-1239.

Kanan, W. 1885. Calculating Arca and Angle
of a Needle-like Triangle. Unpublished manu-
seript.

Kanan, W. 1987. Branch cuts for complex ele-
menury l'unchons In The State of the Art in

s

Institute, New York.
Barnerr, D. 1381. A blo floating-point envi-

Brown, W. 8. 1981. A simple but realistic model
of floating-point computation. Trans.
Math. Softw. 7, 4, 446-480.
CarpeLLy, L., DONAKUE, J., GLASSMAN, L., JORDAN,
M., Kasrow, B., anp NELson, G, 1985 Mod-
ulad Report i Digital §; Re-

M. 4. D. Powsll and A
Iscrles, Edn.. Oxford University Press, N.Y.,
Chap. 7.

Kanan, W, 1988. Unpublished lectures given at
Sun Microsystems, Mountain View, Calif.

KAHAN W., aNp Coonex, J. T. 1982. The near

lity of synwx, and diog-

nostics in wil
menu. [n The R:lcl«mllup between Numerical
and Languages, J.

search Center Report #562, Pa]o Alto, Calif,
Coby, w J. et sl. 1984. A proposed radix- and
dard for floating-

point nnl.hmchc IEEE Micro 4, 4, 86-100.
Copv, W. J. 1988. Floating-point standards—The-
ory and proctice. In Reliability in Computing:

g
K. Reid, Ed. North-Holland, Amsterdam, pp
103-115.

Kanaxn, W., aNp LeBranc, E, 1985. Anomalies in
tho IBM sacrith packege. In Proceedings of the
7th IEEE Symposium on Computer Arithmetic
(Urbena, 1), pp. 322-331.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

48 . David Goldberg

Kmxmm.l! W., AND Rircrie, D. M. 1978, The
C Programm mgbanguaee Prentice-Hall, En-
glewood Cliffs, N.J.

Kmcuner, R., aNp Kurisen, U 1887 Arithinetic
for veclor . In Proceedings of the 8th
IEEE Symposium on Computer Arithmetic
(Como, Italy), pp. 266-269.

Knutn, D. E. 1981. The Art of Computer Pro-
gramming Addison-Weslcy. Reading, Mass,,
wvol. 11, 2cd ed.

Kuutsit, U. W, ano Mmankez W, L. 1988. The
‘Arithmetic of the Digital Computer: A new
approach. SIAM Rev 28, 1, 1-36.

Matura, D. W., anp Kornsrur, P. 1985. Finite

Precition Rational Arithmetic: Slash Number

Systoms. IEEE Trans. Comput. C-34,

Reisew, J. F., ano Knumn, D E. 1975,

1, 3-18.
Evading

the drift in flosting-point addition. Inf. Pro-

cess. Lett 3,3,

P. H. 1974. Floating-Pownt Computa-

tion, Prentice-Hall, Englewood Cliffs, N.J.
Swartzranper, E. E, Ao ArExoroures, G. 1975.
The sign/flogerithm number system. IEEE

Trens. Comput. C-24, 12, 1238-1242

WarTizn, J. S. 1971, A unified algorithm for ele-
mentary functions. Proceedings of the AFIP

ggsmxg Joint Computer Conference,

Reccived Docember 1988; fina! rewssion accepted March 1880

ACM Computing Surveys, Vol. 23. No 1, March 1991

pp. 379-

